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The Bishop-Phelps theorem and the RNP 

R. Huff 

For considering extensions of the Bishop-Phelps theorem [1], Lindenstrauss 

[5] studied the following two possible properties for a real Banach space X. 

PROPERTY A. For every Banach space Y the set 

P(X,Y) « (T € L(X,Y) : ||T|| «- ||Tx|| for some x in X with ||x|[ - 1} 

is norm dense in the space L (X,Y) of all bounded linear operators on X to Y. 

PROPERTY B. For every Banach space Y the set P(Y,X) is norm dense in L(Y»X). 

For a recent study, see [4]. Here we proved 

THEOREM [3V Tf X fails to have the Radon-Nikodym property, then there exist 

equivalent norms ||-|| and ||| • ||| on X such that the identity operator is not in 

the closure of P((X, ||-1|) , (X,|||-1||)) . In particular, (X,||-||) does not have 

Property A and (X,|||-1||) does not have Property B. 

The proof is obtained by modifying a proof in [2] where it is shown that if X 

has the RNP then it satisfies an apprently much stronger property than Property A. 

An open question is: _Is Property A an isomorphic property? (Equivalently: 

Is Property A equivalent to the RNP?) 
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