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FІřTЫ WIИTER SCHOOL (1977) 

REFLECTIVE SUBCATEGORIES OF Poset AND Top 

Jan MENU 

1. INTRODUCTION. 

1.1. In this paper reflective subcategories of some concrete cate­

gories are studied. It is proved that Poset has only one non-tri­

vial reflective subcategory. This result is used to describe the 

type of reflection in Top by means of :he separation axioms that 

are satisfied. 

1.2. Let C be a concrete category, i.e. a couple (C,U) where C is 

a category and U : C •* Set a faithful functor. For a set X we de­

note 

C u X 

the class of all a € obj C such that U(a) = X. If a,b e C u x, we 

define 

a < b iff there exists a <j> : a -* b € C, with U(<fr) = lx 

and this defines a preorder on C u x. 

1.3. A subcategory K of C is said to be reflective iff for every 

a e obj C, there exists an af € obj K and a morphism r& : a -* a
1 

such that for every morphism <J> : a -*• b, b € obj K there exists a 

unique <J>' : a' -* b which makes the diagram 

a — - W a1 

commute. 
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K is said to be epi- (resp. mono-) reflective iff the reflection 

morphisms r are epi- (resp. mono-) morphisms. A subcategory of 

concrete category is simply reflective iff the reflection mor­

phisms are carried by the identity. 

It is well-known that every mono-reflective subcategory is also 

epi-reflective. 

Evidently C is a reflective subcategory of itself, and if C 

has a terminal object t^, the subcategory consisting of this single 

object is also reflective. In these cases the reflective subcate­

gory is said to be trivial. 

1.4. In the category of topological spaces the subcategories 7"opQ, 

Top1, Top2> C^19C1^2 (with as objects the (TQ)-, (1^)-, (^-com­

pletely regular, completely regular Hausdorff-spaces) are examples 

of epi-reflective subcategories, while the subcategory of the com­

pact Hausdorff-spaces is an example of a non-epi-reflective subca­

tegory. 

1.5. Let (C,U) be a concrete category, 2 = {1,2} the 2-element set, 

p € C u 2 . If a £ obj C, x € U(a), then define 

C'(x) = {y| 3 $ : p - a € C, U(4>)(2) = {x,y}} 

C°<x) = {x} 

C*(x) = C'(C^a(x)) 
P P P 
C (x) = u{c£(x)|k € U K 

a is said to be p-connected (p-c) iff 

V x e U(a), C (x) = U(a). 

a is p-totally disconnected (p-td) iff 
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V x e U(a) : Cp(x) * {xK 

It is easy to see that if C is complete and has extremal subobjects 

the full subcategory of the p-td objects is epi-reflective. 

1.6. In the category Poset of partially ordered sets and monotone 

mappings we denote by 

the poset 

2" 

\X/V 

§2. REFLECTIVE SUBCATEGORIES OF Poset. 

2.1. PROPOSITION 1. Let K be a non-trivial reflective subcategory 

of Poset, K ?- K^. Then K is simply reflective. 

PROOF. Let r' : 2f -* 17 be the reflection of 2». 

a) Suppose r2t(2') = 1. Because every constant function in Po­

set carries a morphism, and because of the uniqueness 
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condition in the definition of reflection, it follows that 

T1" = l. 

Let (X,<) be a 2'-connected poset, x € X and y € C» (x). We denote 

by 

fx,y : 2' - «•<> 

the morphism such that f (2f) = {x,y}. 
x,y 

rX 
Let (X,<) £-*- ̂ K' <K ) b e t h e reflec"tion of (X,<), then there 

exists a unique f *_ : 1 -» (X^,<^) such that the diagram 

(X,<) 

4 

x,y 

ÍXK,<K) 

x.У 

*2 
-* 1 

commutes. Consequently, r-vOO = 1. Again it follows easily that 

(Xj£,<̂ ) = 1 for every 2'-connected (X,<). 

Let r2 : 2 «• 2 be the reflection of 2. 

(i) If r A 2 ) - 1, and thus 2 - 1 , one proves with the same me­

thod as before that V (X,<) € obj Poset : (X^,^) = 1, and 

in this case the reflection is trivial 

(ii) Suppose that r2 is one-to-one. Because 7 is necessarily 

2f-td, it follows that r2 is an isomorphism and K = K^. 

b) If r2 is one-to-one, then also r2 is one-to-one. Let 

rc : C -* T be the reflection of C- Consider the diagram 
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-#* 2
1 

И 
-**- 2

1 

with f
a
(x) = [г 

Іf X = \ oг з 
Іf X = 2 OГ ., 

f,(x) = {. Іf X = 1 OГ 2 
Іf X = з oг i» 

and f! (i = 1,2) the unique extension of f. which makes the 
l i 

diagram commute. 

From this it follows that TQ is one-to-one. 

Let (X,<) € obj Poset, x * y € X. 

(i) if x < y, consider the morphism 

f • (X <) - 2' • lz "* 2 if z > y 
x,y * VA» ' ' lz •• ! for the others. 

Because the diagram 

(X,<) ^ »- 2' 

(x
к
,<

к
) 

*>У 

— 2
1 

commutes, it follows that rv(x) ^ r^Cy). 

(ii) if x ^ y and y ^ x, consider the morphism 

э
x,y 

: (X,<) - C : z •+ i 

z •+ 3 

z •+ w 
Z •+ 2 

if z < x or z < y 
if z = x 
if z > x or z > y 
for the others. 

As before, because the diagram 
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(X,<) * , y ţ- c 

(x
к
,<

к
) 

&
x,y 

commutes, it follows that r^(x) ** r^(y), and thus r
x
 is one-to-one 

for every (X,<) e obj Poset. AC is then monoreflective, and 1.3. 

states that K is epi-reflective, and thus simply reflective. 

2.2. PROPOSITION 2. Let K be a simply reflective subcategory of 

Poset. Then K * Poset. 

PROOF. Because D asd -E~are~ maximal in Poset u 14, D and E e obj K, -

and thus C € obj K. 

Let (X,<) € obj Poset, x ^ y € X, x ^ y and y «£ x. It follows from 

the diagram 

(X,<) 

x,y 

-*• (W 

g* 

r 

-*- C 

x.y 

that in <X^,<^) : x ̂  y and y ^ x, which proves that AC = Poset. 

2* 3 , COROLLARY 1. 'JC is the only non-trivial reflective subcategory 

of Poset. 

§3. REFLECTIVE SUBCATEGORIES OF Top. 

3.1. PROPOSITION 3. {Hwilich) Let K be a reflective subcategory of 

Top. Consider L, the full subcategory generated 
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by the subspaces of products of objects in K. 

Then the following hold : 

(i) I is epireflective in Top 

(ii) K is epireflective in land the reflection 

morphisms are embeddings 

(iii) AC = L iff K is epireflective. 

3.2. Most natural examples of reflective subcategories are epi­

reflective or simply reflective. They were characterised in [2] 

and [3]. 

PROPOSITION 4. A subcategory K of Top is epireflective iff every 

product of objects in K and subspaces of objects in K 

are again in K. 

PROPOSITION 5. A reflective subcategory K of Top is simply reflec­

tive iff it is epireflective and every indiscrete space 

is in K. 

3.3. The following proposition gives a characterisation of epire­

flective subcategories of Top by means of separation-axioms : 

PROPOSITION 6. Let K be an epireflective subcategory of Top. Then 

one of the following holds : 

(i) K is simply reflective 

(ii) K = TopQ 

(iii) K c Top1. 

PROOF, (i) Suppose a non (TQ)-space (X,T) € obj K. Then (X,T) 

contains the indiscrete space on the 2-element set as a subspace. 

Because every indiscrete space is a subspace of a product of the 
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2-element indiscrete, space, Propositions U and 5 prove that K is 

simply reflective. 

( i i ) Let K C TopQ, then K is epireflective in Topg. Given (X,T) 

a (T0)-space, x and y e X, define a partial ordering on X as fol­

lows : 

x'< y *• X €. y 

and this we denote by (p(X,T),<T). 

Define 

F : Top0 •+ Poset 

as follows : 

F((X,T)) = (p(X,T),<T) 

F((T,f,Tf)) = « T,f,< T f). 

It is easy to see that F is a functor. 

We now prove that K' =F(K) is a reflective subcategory of Poset. 

If (X,<) € obj Poset, define 

T -= u{(i|(p(X,U),<u) = (X,<)} 

r : (X,T) -* (Xf,Tf) the reflection morphism 

(Xf,<f) = p((Xf,Tf),<Tf). 

Let f : (X,<) -* (Y,C) be a monotone function, (Y,c) € obj Kf. 

Then there exists a (Y,U) € obj K such that p((Y,LD,<u) = (Y,c). 

The function f : (X,T) *+ (Y,(i) is continuous, and there exists a 

unique ff : (Xf,Tf) -> (Y,a) such that ff or = f. Because also 

(<f,ff,C) is a morphism, K1 is reflective in Poset. It now fol­

lows from Corollary 2.3. that *Kf is trivial or the category of 2-td 

objects. In the last case, K C Top^, which is also true if 

K< = {!}. 

Suppose now thatt<f = Poset. If U = {{!},{!, 2}}, then (2 ,U) € ob}K. 
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Let (X,T) € obj TopQ, x € X, V € U(x), V open. Define 

f x V : X - z : z * - l if z € V 

z •* 2 if z g V. 

fx v : (X,T) -* (2 ,U) is continuous, which proves that 

r : (X,T) -+ (Xf,Tf) is an isomorphism and K = Topn. 

3.4. The following example shows that a non-epireflective subcate­

gory of T need not consist of only Hausdorff-spaces. 

Let 

V = {n|n € K}-u {af8h U = {A|ACD, An{a,B) = * or A
c finite} 

and (X,T) is the topological sum of CR-T^) and (D,(J). Let K be 

the full subcategory of Top with as objects the spaces (A, t l ) , sub-

space of a product of (X,T)., and with the following property : 

whenever B c A, B connected •* B C A. It is easy to see that K is 

a reflective subcategory of Top, but not epireflective. 
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