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SEVENTH WINTER SCHOOL (1979) 

On the existence problem in the algebraic 

approach to quantum field theory 

Gerald Hofmann 
Department of Mathematics 
KMJ Leipzig, DDR-701 Leipzig 

1. P'*e algebraic np?ro^ch to quantum •Piel.d theory 

tni» framework of Garding-Wightnan-Axioms /4/ a quantum field 
y*(x) (neutral, scalar) is described by a normed, positivev 

linear functional V/ on the algebra of test functions 

4 - C O f(Ed)© fUR2*)Q ... /I.12/. 
(tfUft ) is the Schwartz space over R and d is the space-time 
dimension). Y/ has additional properties listed below and reflecting 
the GW-axioms. 
The elements of && have the form f=(f/N,f1,. ..,f„,0,... ) where 
enly a finite number of components f.-£ S(fR ) is different from 
zero. S^ becomes a * -algebra with unity 1=(1,0,0,...). The 
operations are given by (-̂ gL̂ f„,+&-,, (fg>m

s 2~ fiS-if 

( ̂ ^ ^ • • • • ' V - L e t K=^f ( 1 ) #f ( 1>; f ( 1 ) 6 % , N*1,2,...j 

be the cone of positive elements of ^ • 
In a concentrated formulation a Y/ightman functional W is a linear. 
functional on sĴ with 
i) W(l)=1, ii) Y/(f)?0 for all fcK, iii) Y/(f)=0 for all f €L, 

iv) Y/ is continuous, 
(L is a certain subspace of ^related to the Poincare invariance, 
locality and spectrality). 
(A) means geometrically the following: 

Piî̂ ure 1 
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By the GKS-representation of )f0 there is a one-to-one 

correspondence between the quantum fields ^(x) and the Wightman-

functionals W / 1 , V - V . Therefore, in some sense one can say that 

axiomatic quantum field theory is a mathematical problem, namely 

the investigation of ̂  , its positive linear functionals, the 

study of K and L and so on. 

The algebraic structure of ^ is investigated in /2,13/. 

Let £ denote the well-known Schwartz space topology on ;f(fRnd ), 

for instance given by the following system of semi norms: 

"'-•--yP.SIiS.lj; J^1 + (xi>2>%f/fn(xlr«-xn)|. -0.1..... 
/ o 1 d - 1 x N (xj = (xi,xi xi )). 

Then we can define a lot of topologies on ^ . 

Definition: 

j ) *m : P ( f )(v ) ( f ) = £ ^ n ^ n " * • v / h e r e ( ^ n ) a n d (V r u n 

through the vet of a l l sequences of n a t u r a l numbers. 
i j - )* io : Ptv- w ( f )= ZtJfJL* where (t) runs through the se t 

^ r n ; k n*0 n n * n 

of all sequences of natural numbers but k=0,1,... is 

fixed in every semi norm, /9/. 

i i i ) r p : QR f i n(fH|fn l ln i ,n ;m-=0,1 ,2 , . . . . 

i v ) ^ : ftf) = inf f£p(g ( i ))p(h ( 3 )>; f--f c ( i )h ( i )j and p 

runs through the set of ^-continuous £-eni rormc, /15/, 

LOt us remark that £& is the topology of the direct sum̂ j-nd ?& 
the restriction of the topology of the direct product X^'\V^) 
to L̂ e subspMce ^ . Thus, £^ is the strongest I.e. topology on 

$a such t'.at the restriction of z& to every subspace ^(£tnd) 

(n-.1 ,2,. . . ) ir tl-.c Schwertz space topology jgn while £> is the 

voakest topolory with thin property. Some properties of the I.e. 

toD-j'o-V.es on ^ between ZTp and £ ^ are listet in the following: 

figure 2. Pi?-urL £ shows that the topology C ^ is a "good"1 one 

from topolo->:c-..l viewpoint but a "bad11 one from viewpoint of 

:: end ordering and 2^,, J/ f or instance are"good" ones from -*i r pint 
of semiordering ^ut "bad" ones from viewpoint of the tope o ' 

structure. 
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Firure 2: /5/ 

L e t v be a l . c . 
topolo< y on iPg, rJP • . - %o - • - X • - - т9 

The r e s t r i c t i o n of 
tr to && 

7rřSCПГę,У "$-* , The r e s t r i c t i o n of 
tr to && 

i f 

The c l o s u r e of a 
s e t ï,í c j ^ 

Ш ^ l й Г = Ï Г * , i f M f u l f i l s The c l o s u r e of a 
s e t ï,í c j ^ S M c l Ä , n = 0 , 1 , . . . 

I s J ^ M c o т i p l e t e ? ï e s , i f t h e r e i s a 
+ . + . + . + . + . + • + • + . + . + . + . + 
f i l t e г b a s e W M w i t h 
S n U c U , n = 0 , 1 , . . . , VeШ 

The f - b o u n d e d s e t s +++++++++++++++++++++++ 
t h e oaшe bounded s e t s 

I s ^OtrЗ b a r r c l l e d ? ••.•••••••••••••••••••••••*•••••••••+ I s ^OtrЗ b a r r c l l e d ? 

I o - ^ Г ^ J b o r n o l o s ç i c a l ? + • + • + • + • + • + •+ •• •• ••«« • • • • * . * • • • • • • • + 

I s K тr - n o r m a l ? I . + . + •+ •+ •+.+ .+ • + •+•••••••••• 

( + means "yes" but . means "no", S denotes the projection 

from ^ onto C O tf({R
d
) Q f(JR2&

 ) 0 ... ® 4>(fit
nd
). ) 

Because of (Aii) it is of interest to investigate the cone K 

and the positive linear functionals. There is a linear functional 

T with T(f)£0 for all f€K and T is not ^-continuous. But if 

one replaces K by its closure K*3*' one can prove the following 

Statement: 
a) Every linear functional T on rf^ with T(f)»0 for all 

f€ K^* is automatically -A/-continuous, /14/. 
b) It is Kr~=K*=£Xf(i>*f(i); f ( i ) 6 ^ , the sum is 

Toe-convergent $ /3,6/. 

Because of a) it is possible to replace (Aii) and (Aiv) by the 
new condition (Afii>: W(f)^0 for all fcKr*. 
A consequence of b) is that if one want to closure K it is 
sufficient to do this with sequences and not with nets. Some 
further interesting properties of K and K • are proved in 
/6,11,14/. 

?• On the existence problem in axiomatic field theory 

The axiomatic formulation of quantum field theory leads to the 

following three questions: 

A) Are there contradictions between the axioms? 
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B) Are the GV/-axioms independent? 

C) Are the axioms general enough to describe interacting 
fields also? 

The answer to A) is no, because there are the free fields for 
instance. The answer to B) is yes. But the answer to C) is almost 
unknown. One has examples of interacting fields for space-time-
dimension 2 and 3 only. The following two theorems show the 
existence of fields which are different from the known fields. 
The proofs are abstract ones, i.e. we do not explicitely construct 
the fields. 
Theorem 1: /!/ 

a) Every Wightman functional is Jf-continuous. 
b) The V/ightman functionals of the free fields are £*.-

continuous. ( fz : p ^ z (f )= ^ n ^ ^ 2 ' ^n^ r u n s t h r o u S h 

the set of all sequences of natural numbers.) 

c) The V/ightman functionals of the generalized free fields 
are ^-continuous. 

d) The Wightman functionals of the Wick polynomials and their 
derivatives are '2̂ ,-continuous. 

e) The superposition of V/ightman functionals of a)...d) is 
^-continuous too. 

Theorem 2: /7/ 
There are Wightman functionals which are not ^-continuous. 

Theorem 1 shows that the V/ightman functionals of all known fields 
are 4tOQ-continuous. On the other hand Theorem 2 implies the 
existence of fields without this property. Further the topologies 
on i? give a possibility to classify the V/ightman functionals by 
the help of their continuity with respect to these topologies. 
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