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SEVENTH WINTER SCHOOL (1979)

On the exictence problem in the algebraic

approach to quantum field theory

Gerald Hofmann
Department of Mathematics
KLU Leipzig, DDR-T701 Leipzig

1. M™e algedraic ~norozech to quantum field theory

- Sae frexework of Gzrding-Wightmen-Axioms /4/ a quantum field
£(x) (neutral, scalar} is described by a normed, positive*
linear functioral W on the algebra of test functions

%= o &) 0 S @ ... /1,12/,
(:5’(mnd) is the Schwartz space over and and d is the space=time
dimension). V has additional properties listed below and reflecting
the GW-axioms.
Tre elements of S’. have the form f-(f f ....,f s0seee) where
cnly a finite number of components f éf(lR ) is different from
zero, g becomes a # -algebra with unity 1=(1,0,0,¢¢.). The
onerations are given by (f+g) =f mtEn? (fg) = Z fig;]'

(f*)m'fm(xm""’x1)' Let K‘igf(i) (i) f(i)eg N=1 2’-033

be the cone of positive elements of -5’.

In a conecentrated formulation a Wightman functional W is a linear.
functional on ¥ with

1) wW(1)=1, ii) Ww(f)20 for all feK, iii) V(f)=0 for all feL,

iv) ¥ is continuous, . )
(L is a certain subspace of forelated to the Poincaré invariance,
locality and spectrality).

(A) meens meometrically the following:

Fizure 1
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By the GiS-representation of :ﬂb there is a one-to-one
correspondence between the quantum fields (P(x) and the Wightman-
functionals W /1,12/. Therefore, in some sense one can say that
axiomatic ouantum field theory is a mathematical problem, nemely
the investigation of fo , its positive linear functionals, the
study of K and L and so on.

The alzebraic structure of :f’a is investigated in /2,13/.

Let S, denote the well-known Schwartz space topology on :f(mnd
for instance glve"x bv the following s*rstem of semi norms:

NE N =6up %ml'rr ‘n' (1+(xd) )m("”) Taliygeeeamy)} me0,1,.ue,

(k _'(.ln ,X1,.-.,X )).
Then we can define a lot of topologics on :5’@,
Definition:

i) Ty : p(fn)(vn)(f>, z 'S ﬂfnu\,. , vhere (f’) and (\? ) run

throush the set of all scouences of natural numbers,
i1) Ty ¢ p(ﬁl)k(fhmzofnljfn“k, where (fn) runs through the set

of all secquences of natural numbers but k=0,1,... is
Fixed in every semi norm, /9/.
iii) Tp : qn,m(f)=”fn"m yi0=0,1,2,000 o

iv) M Bee) = inf § Tpe e 2L g

runs through the set of 2‘0 -continuous semi rormc, /15/.

Let us remark that €g is the topology of the direct sum_2rd t'p
the rectriction of the topology of the direct product )g’ﬁ’ prd

to tle subspace ¥ . Tus, Tgis the strongest l.c. topolorr'r on
Yo such t-at {re rectriction of %@ Lo every subspace f(ﬁha)
(n=1,2,...) ir il Schwortz space topology $, vhile 2p is the
veakest topolory with tiin property. Some propertiecs of the 1l.c.
tepu'ogies on S’e yetlvicen Tp and %@ are listet in the following:
fisure 2. Firurc 7 shows that the topolosy Tg is a "gocd' one
from topolo~ic:l -ricwonoint but a "bad" one from viewpoint of
cemiordering and o M for instance are'good" ones from i v- oint
of semiordering but "bad" ones from viewpoint of the tupe o

structure.
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Figure 2: /5/
Let 7 be a l.c.

topology on ¥g > . .. Too c e e N L. (-
Tt oy =
The restriction of ! F(R™) " S0 {
T to g@
The closure of a L r=NT - B, if I fulfils ]
set M Fg S MeM, n=0,1,... '
Is .%C‘C'Jcomplete? Yes, 1If there is a

Fetetetotetetototetotodt
filter base W/(tlyith
S,U<U, n=0,1,..., Ueln

The T -bounded sets . B e n s
the same bounded sets

tre0ersssseeer s st eenersscsrrressssve st

Is ¥ Cz] barrclled?
y@

£%] bornological? Fototetetotet civieriearssrerarnacneot

Is K T -normal? ' e + oF ot oF oF et oF o+ sFeesecerane

{ + means "yes" but . means '"no", S_ denotes the projection

trom £ onto €0 SEH @ LE*D) @ ... 0 RE).)

Because of (Aii) it is of interest to investigate the cone X

and the positive linear functionals. There is a linear functional
T with T(£f)2 0 for all f€K and T is not %g-continuous. But if
one replaces K by its closure K™ one can prove the following

Statement:
a) Every linear functional T on ¥y with T(f)> 0 for all
fe ™ is automatjcall MN_continuous, /14/.
b) It is K ®=K®-4§3 f(igﬁf(i); £(1)e ¥ , the sum is

i1 2o, ~-convergent § /3,6/.

Because of a) it is possible to replace (Aii} and (Aiv) by the
new condition (A'ii): W(£f)2zO0 for all fex'e®. :

A consequence of b} is that if one want to closure K it is
sufficient to do this with sequences and not with nets. Some
further interesting properties of K and -Ifzb are proved in
/6,11,14/.

2., On the existence problem in axiomatic field theory

The axiomatic formulation of quantum field theory leads to the
following three questions:
A) Are there contradictions between the axioms?
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B) Are the GW-axioms independent? .

C) Are the axioms general enough to describe interacting
fields also?

The answer to A) is no, because there are the free fields for
instance. The answer to B)} is yes. But the answer to C) is almost
unknown. One has examples of interacting fields for space-time-
dimension 2 and 3 only., The following two theorems show the
existence of fields which are different from the known fields.

The proofs are abstract ones, i.e. we do not explicitely construct
the fields. .

Theorem 1: /7/

a) Every Vightman functional is ,Ar—continuous.

b) The Vightman functionals of the free fields are 21—
continuous. ( €, : pm.‘)'z(f)= Z)"nllfnlle, (fn) runs through
the set of all sequences of natural numbers.)

c) The Vightman functionals of the generalized free fields
are Tp-continuous.

d) The Wightman functionals of the Wick polynomials and their
derivatives are %g-continuous.

e) The superposition of Vightman functionals of a})...d) is
Zeo-continuous too.

Theorem 2: /7/
There are Wightman functionals which are not ¢_,-continuous.

Theorem 1 shows that the Wightman functionals of all knovm fields
are Ty-continuous. On the other hand Theorem 2 implies the
existence of fields without this property. Further the topologies
on 5; give a possibility to classify the Wightman functionals by
the help of their continuity with respect to these topologies.
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