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EIGHTH WINTER SCHGOL Ofi ABSTRACT ANALYSIS (1980)

SOME NON-NORMAL SUBSPACES OF THE GECH-STONE COMPAC-
) TIFICATION OF A DISCRETE SPACE

by
A.BYaszczyk and A,Szymariski

In this note we shall present some methods for constructions of
non-normal subspaces of @x = the Sech-Stone compactification of a disc-
rete space of cardinality x, or of w* = fw=-w, or of U(x) - the space of
all uniform ultrafilters on x.

Firstly we shall present a method using Hausdorff’s gaps.

By a ¥ -tower on x we mean an indexed family{To(: o«< ¥ ] of subsets

0f ¥ such that [T -T;|<x and [T;- =k for all «< 3<7.

o |

Lemma 1. If x is regular and {Ta(: oc<»<+j is a x -tower on K, then
Yhere are K+-towers {Ao(: oL < K+_} and {Ba(: of < x+} on x such that:

(1) AyuBy =T and A,nB, =P fore<x .

(2) There is no CC x such that |A -C|<x and lC/\ B, |<x for all L« Kkt

The families {Au: £ < »<+j and {BD(: o< K+5 y s in Lemma 1, form a Haus-
dorff’s gap on K. With the help of these families we will construct two
disjoint closed subsets E,F of the space T = U{clﬂKT,,(: &< )<+j which can
not be separated in /3x. Namely, we set E = U{clﬁxA,cAU(x): & < K+} and
F = U{clm‘BdnU(K): oL & K+}. Thus T is an open and non-normal subspace
of Ax. It turns out that if I is a P-point ideal on x (see [T1) and
é" - x+, then there is a K+-tower {Tu(: « < k+} on x such that

I- U{cl,D: Delj = U{el,, Ty <>t<»<*}. Hence
A
Theorem 1. If x is regular, 2 = «* and I is a P-point ideal on «,

then I is not normal.
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This theorem improves a similar result by E. van Douwen [vD] stated

for normal ideals on regular x.

Let { A S %< 01! be the order preserving indexing of the limit ordi-

nals in @, and let NL be the set of non-limits ordinals in @y

Lemma 2, There are families {4, : «< «,| and {B : £<,} such that:
(0) (A -As]| + | B, =Bs| < for K< Py,
(1) AvB, = A, ANL and A, n B, = P for o <w,,

(i1) there is no CC w, such that | A ~C|<w and [B,n C|< e for alld<a

1

The families {A : &< w,] and {Bs: &< w,{, as in Lemma 2, also form
a special kind of Hausdorff’s gaps on @y With the help of these fami-
lies we shall show

Theorem 2. If{ T : <<w,j is an w,~tower on c, then ¥ o U {elauTx A
noti d<«@,} 18 a non-normal space.

Proof. The sets E = U{BdU{Lg: § e A jt «<w,} and F = U{BAU{L¢:
t{e B.(i: o« < “’1}' where I.g - clp,,Tg-el,,_,!qu for § € NL, are disjoint

closed subsets of T* which can not be separited in T%,

It is easy to see that if the continuum hypothesis, CH, holds and
P € w* then w"-{p} contains, as a closed subset, a non-normal space ¥

for some u.'-tower {'I'“: L< w1j on w. Hence

Corollary ( see [G1,[R],[W]). (CH). The space w*-{p} is not normal

for each pe w?,

The details of the proofs of all above resulis can be found in our
paper [BS]. Besides, we shall present, with details, how the removal of
some points p from U(x) gives non-normality of U(x)-{pj}.

A set A contained in a space X is called strongly discrete if the
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points of A can be simultaneously separated by disjoint' open subsets
of X. Note that countable discrete subsets of regular spaces are stron-

gly discrete.

Theorem 3. If x is regular and A is a strongly discrete subset of
the space U(x) of cardinality ¢ x, then U(x)={pj is not normal, for
each p eclA-4.

Proof. Let p € clA-A, For each acA let D,c % be such that Dad Ps
Dy€a and D, ~ D, |« x whenever a # b. Such sets D, exist, since AC U(x)
is strongly discrete. Let us set § ={BCA: peclB f{o Note that §{ is an
ultrafilter on A. Now we put F = f\{clU{D;: aeBj: BE §}. where
n; = c1D_~ U(x). Clearly, F is closed in U(x) and peF,

Claim, Fn clA = {p}. Assume otherwise and let q # p be such that
qePnclA, There is a Be § such that q ¢ clB. Since | A |¢ x, there is a
CC x such that |D,~C [< % for each aeB and [D,~C|<x for each a ¢B
(neo [(CN]). Hence FCel,;CnU(x) and q¢cl,,C ~U(x); a contradiction.

By the Claim, the sets F-{p| and clA-{pj are disjoint in U(x)-{pj.
Clearly, they are also closed in U(x)={p}. It remains to show that F={p
and clA-}p} can not be separated in U(x)~-{p{ by open sets.

Assume otherwise, and let U,V be disjoint open subsets of U(x)={p}
containing F-{p} and clA-{p}, respectively. For each a €A let 9, be in
VAD, -{aj and let Q = {a,: aeA{. Then clQaclA @ P and clQAF 4 D.
Hence c1Qna (P-{p}) /# 0 and therefore UnQ 4 f. But this is impossible
since QCV and UAV = 0, '
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