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EIGHTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1900) 

SOME NON-NORMAL SUBSPACES OF THE CECH-STONE COMPAC-

TIPICATION OF A DISCRETE SPACE 

*y 

A.Biaszczyk and A.Szymariski 

In this note we shall present some methods for constructions of 

non-normal subspaces of /3K - the Cech-Stone compactification of a disc­

rete space of cardinality K, or of u>* - /3oo-^t or of U ( K ) - the space of 

all uniform ultrafliters on K. 

Firstly we shall present a method using Hausdorff's gaps. 

By a ^ - t o w e r on K we mean an indexed f a m i l y X T^: o(< y J of s u b s e t s 

,of K such t h a t | T^-T^ | < K and [ T.3-T^ | « K for a l l oC < fi< X. 

Lemma 1. I f K i s r e g u l a r and { T^: OC<K + J i s a K+-tower on K, then 

t h e r e are K + - towers (A^: oC< K J and (B^: u<\< J on K such t h a t : 

( 1 ) A ^ B^ « T̂  and A ^ A B ^ • jJ f o r * < K+ • 

( 2 ) There i s no C C K such t h a t | A^-C |< K and j C A B^ |< K f or a l l oL < K+ 

The f a m i l i e s (A^: oC< K+j and (B^: d< K*$ , a s i n Lemma 1, form a Haus­

d o r f f ' s gap on K. With the h e l p of these f a m i l i e s we w i l l c o n s t r u c t two 

d i s j o i n t c l o s e d s u b s e t s E fF of the space T - U { c l ^ l ^ : <*< x } which can 

not be separated i n /3K. Namely, we s e t E - U { c l ^ A ^ A U ( K ) : oC < K } and 

F - U { C 1 - 3 X B O C A U ( K ) : OC< K + J . Thus T i s an open and non-normal subspace 

of /3K. I t turns out t h a t i f I i s a P - p o i n t i d e a l on K ( s e e [ T ] ) and 

2 * - K"*", then there i s a * + - t o w e r {T^: OC < k+ ) on K such t h a t 

I - U { c l / 3 K D : D € I } - U{olflK^i c ^ < x + { . Hence 

A 

Theorem 1. I f K i s r e g u l a r , 2 K - K
+ and I i s a P - p o i n t i d e a l on K, 

then I i s n o t normal. 
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This theorem improves a similar result by E. van Douwen [vD] stated 

for normal ideals on regular x. 

Let {A^: <*< W l J be the order preserving Indexing of the limit ordi­

nals in u1 and let NL be the set of non-limits ordinals in «,,. 

Lemma 2. There are families { A^: *<o*A and{BaC: oC<w.} such that: 

Co) lA^-A^I + IB4-Bjl.cc* for A<fi<c*y 

( i ) Arf */ B^ - A^ r\ NL and Arf A B^ - jfJ for <*<£*>,., 

( i i ) there i s no C C ^ such that |AA-C|<co and ( B O C A C | < C « for allofcfe 

The famil ies {A^: -<< co-, J and {B^: A< &A9 as i n Lemma 2 f a l s o form 

a special kind of Hausdorff ' s gaps on CJ*. With the help of these fami­

l i e s we shal l show 

Theorem 2. I f {T^: ^<co. j i s an ^ - t o w e r on eo9 then T* - U f c l ^ T ^ A 

A « * : o(< co. j i s a non-normal space. 

Proof. The s e t s £ - U { B d U { L | : j fcA^j: dC<<->1} and F - U { B d U { L j : 

: I € B^j: oC^co.j, where Lj - c l ^ T g - c l ^ T * . for j 6 NLf are d i s jo in t 

closed subsets of T* which can not be separated i n T*. 

I t i s easy to see that i f the continuum hypothesis, CHf holds and 

p e co*, then w*-{pj contains, as a closed subset, a non-normal space T f 

for some co..-tower {T^: oC-ico.j on u . Hence 

Corollary ( s e e [G3,[R3,[WJ). (CH). The space co*-{pj i s not normal 

for each p e CJ*. 

The d e t a i l s of the proofs of a l l above r e s u l t s can be found i n our 

paper [BSJ. Besides, we shal l present, with d e t a i l s , how the removal of 

some points p from UC*) g ives non-normality of UC*)-{p}. 

A set A contained in a space X i s cal led strongly d iscrete i f the 
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points of A can be simultaneously separated by disjoint open subsets 

of X. Note that countable discrete subsets of regular spaces are stron­

gly discrete. 

Theorem 5. If K is regular and A is a strongly discrete subset of 

the space U ( K ) of cardinality £ K , then U(*)-{pJ is not normal, for 

each p fcclA-A. 

Proof. Let p eclA-A. For each a e A l e t Dac K be such that Dm 4 Pi 
ct a 

Dae a and [D&A D b |*K whenever a / b. Such s e t s D e x i s t , since A C U ( K ) 

i s strongly d i s cre t e . Let us se t \ - | B C A : p 6 c l B j . Note that £ i s an 

u l t r a f i l t e r on A. Now we put F - H { c l U { D * : a e B j : B 6 j j t where 

D* - C 1 D 0 ^ U ( K ) . Clearly, F i s closed i n U ( K ) and p e F . 
a a 

Claim. F A C I A • {p}« Assume otherwise and l e t q / p be such that 

q fe Fn clA. There i s a B 6 f such that qe1 c lB. Since | A I* K9 there i s a 

C C K such that | D -C |< K for each a eB and j D a ^ C [< K for each a f B 

( s e e [CNJ). Hence F C cl/3xC A U(K) and q f c l 3 x C A U W J a contradiction. 

By the Claim, the sets F-JjpJ and clA-{pj are disjoint in U(K)-{p}. 

Clearly, they are also closed in U(K)-{pj. It remains to show that F-{p 

and clA-jpJ can not be separated in U(K)-(pj by open sets. 

Assume otherwise, and l e t U,V be d i s jo in t open subsets of U(*j-{pj 

containing F-{pj and clA-{pJ, respect ive ly . For each a£A l e t qa be i n 

VADa-{aJ and l e t Q - {q&: afeAj. Then CIQA clA 4 0 and clQ A F / fi. 

Hence clQrt(F-fpJ) / fi and therefore U A Q / / ) . But t h i s i s impossible 

since QCV and D A Y - Jt). 
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