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AҶ 

NINTH WINTEH SCHOOЬ ON ABSTRACT ANALYSIS (1981) 

A solution to a problem of De Wilde - Tsirulnikov 

L. Drewnowski 

In a recent paper [l], IS. De Wilde and B. Tsirulnikov have 

shown that if E is a dense "barrelled subspace of a B-complete 

locally convex space X, then there is an order-reversing corres­

pondence between the closed subspaces K of X with M n E = {0} 

and the weaker barrelled topologies £ on E. Under this corres­

pondence, the topologies £ vrhich are assigned to infinite-dfinen-

sional subspaces K are nontrivial in the sense that they give 

rise to duals of E which are of infinite codimension in the 

original dual of E. 

In connection with this, the following question has been asked 

in [l]: 

Suppose E is a dense barrelled subspace of uncountable codi­

mension in a Banach space X* Does there always exist an infinite--

dimensional subspace M of X such that E n E = {Oj ? 

The Theorem below answers this question in the negative* Its 

proof depends heavily upon the results presented at this Winter 

School in the talk of Z. Lipecki [2]. 

T H E O R E M . Every infinite-dimensional Banach (or Frechet) 

space X has a dense Baire (hence barrelled) subspace E of 

codimension at least c = 2 ^ such that if K is a closed sub-

space of X with K n E = {0}, then K is of finite dimension. 

P r o o f . Let Y be a closed subspace of X such that the 

dimension of Z = X/Y is c. (E.g., take Y = M k e r f , where 
** n 

( f x ) i s a l inearly independent sequence i n X*.) Call a sub-

space WCZ a x -subspace of Z i f every l i n e a r l y independent 
sequence (2 ) in Z with J\z subseries convergent has a sub-n n n 
sequence (wn) such that 0 / 21 w

n € W. Clearly, every >c - S U D -



SLO 

space Y." in Z has property (K) ( [2]), and it is not hard to 

see that dim W > c. Now, using Theorem 1 and Proposition 1 of 

[2}, we can find two dense K -subspaces U and V in Z such 

that Z = U © V (algebraically). As observed above, each of 

them has property (K) and is of dimension at least c. 

Let Q:X—• Z be the quotient map and define E = Q~ (tO. 

Since U is dense in Z, E is dense in X; moreover, codim E : 

aim V ^ c . Since U has property (K), so does E; hence, by 

Theorem 3 in [2], E is Baire. 

Finally, suppose that there is an infinite-dimensional closed 

subspace K in X with K r\ E == {0}. Choose a linearly indepen­

dent seouence (x ) in K for vhich J\ x is subseries conver-

n " n 

gent. Then also the sequence (Qx ) is linearly independent and 

the series £ Qx is subseries convergent. Since U is a 
-n. n 

K-subspace in Z, there is a subsequence (y ) of (x ) such 
that 0 £ 21 Qy,- £ u- x t follows that 0 ^ y = 2 Z y fi -3-n. n ^ n 

On the other hand, however, v:e have y € M because all y are 

in K and K is closed. Hence M n E / { 0 | ; a contradiction. 

Thus E has all the required properties. 

E e m a r k. . The above theorem remains valid for all infinite 

dimensional complete metric linear spaces X /which have a Haus-

dorff quotient X/!f od dimension c. We do not know if this is 

alv.ays the case. 

Let us note also that the main results of [lj can be extended to 

the ncn-locally convex setting. 

. R e f e r e n c e s 

[ l ] Ll. De Y.'ilde and B. Ts i ru ln ikov , Bar re l l ed spaces r i t h 

a B-conplete completion, to appear . 
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