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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981) 

Discontinuous invariant functionals and traces 

T.Figiel and S.Kwapien 

Let E be a Banach space with a symmetric basis (e.) . , AJ 

If <S is a permutation of the set IN and x = ̂  x.e £ E, 

i€N J 

A linear map f : E > R Is said to be invariant 

if f(x©Gf) = f(x") for each x £ E and eaoh permutation <5 • 

Let I ( E ) be the space of all invariant linear functionals 

on E. It was known that I (o } = i°)» 

Theorem 1. a/ l(l„) = 0 for U p C - o J . 

V dim l(l^> 1 (±n fact = 2* )j 

c/ there exists E f 1^ such that I ( E ) ̂  {o} . 

.This result has an analogue for unitary Ideals on the 

Hllbert space, H. Let 

SE = ( T G B ( H , H ) : ( S J ( T ) ) £ E } , 

s, ( T ) being the s-numbers. A linear functional 4>: S- ^ C 

is said to be invariant if 4?(imf1) = 4>(T) for each T £ S E 

and each unitary operator U. Ve let T ( E ) denote the spaoe 

of all invariant linear functionals on S., An element 

4> € T(E) is called a trace if <fc(p) = 1 where P : H H 

is a rank one projection. 

Theorem 2. a/ T Clp} = {°J f 0 r -<P<°Pj 

b/ dim T (lt) > 1 , 

c/ there exists E 4 -L-j 8U°h *n*t T ( E ) £ {o} ; 

in fact there is an invariant trace on E. 

Remark. Parts b/ and c/ answer questions asked by 

Professor A.Pietsen in the first talk of the conference (cf. L^j). 

In the talk we proved two parts of Theorem 1. Part a/ 



2* 

follows easily from the decomposition of the vector e1 E 

due to R.Ocneanu. The main ingredient in the proof of b/ 

is the following lemma. 

Lemma 3. For each k > 0 there is £0-)>0 such that, ±f 

vhere Xi^l.f /[ .x. 11 ̂  1, ©\ are permutations and 

x s e . • 6»jeii then l a
4l^£(V)

 I%or «ome --• ̂  1« 

The proofs vill appear elsewhere. 

Remark. More facts are known nov than ±t ±s formulated 

above, Jt,.o.*e have found a characterization of those E 

such that l(E) = {o} (resp. * T ( E ) = -f o } ) . 
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