USA 9

Ryszard Grzaślewicz

Density theorems for measurable transformations

In: Zdeněk Frolík (ed.): Abstracta. 9th Winter School on Abstract Analysis. Czechoslovak Academy of Sciences, Praha, 1981. pp. 56--63.

Persistent URL: http://dml.cz/dmlcz/701225

Terms of use:

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981)

DENSITY THEOREMS FOR MEASURABLE TRANSFORMATIONS

Ryszard Grzaślewicz

1. Introduction

Let m denote Lebesgue measure on Boreal $\mathbf{6}$-algebra of the unit interval $[0,1]$. A function $\tau:[0,1] \rightarrow[0,1]$ which is Borel-measurable and nonsingular (ice. m(A)=0 $\Rightarrow m \tau^{-1}(A)=0$) is called a transformation. We identify transformations which differ only on a set of measure zero. A transformation τ is called invertible if τ-1 exists and is also a transformation. τ is celled measure-preserving if $m \tau^{-1}(A)=m_{1}(A)$ for all Bored A. The group of all invertible transformations is denoted by G. By G_{m} we denote the group of all invertible measure- preserving transformations .

Every invertible transformation τ induces a positive invertible isometry $T_{\tau}^{(p)}$ of $I^{p}(m), 1 \leqslant p<\infty$, defined by

$$
\mathrm{I}_{\tau}^{(p)}(f)(t)=\omega_{\tau}^{1 / p}(t) \pm\left(\tau^{-1}(t)\right),
$$

where $f \in I^{p}(m)$, $\omega_{\tau}=d m \tau^{-1} / \mathrm{dm}$. If $\tau \in G_{m}$, then $\omega_{\tau}=1$.

By a classical result (see egg. Ionescu Tulcea [2]. footnote 3), for every $1 \leqslant p<\infty$ we can identify G with
 (ie. with the ret of all Eenach Inttice automorihiame of $\mathcal{L}^{\mu}(\mathrm{m})$). Therefore we can define a tupolacy in G as the strong operator topology inherited from $L\left(L^{p}(\mathrm{c})\right.$). For all $16 \mathrm{p}<\infty$ these topologies coincide (Choksi,Fakutani [1] , Theorem 8). Moreover, $\mathcal{L}^{\text {F }}$ - strong and weak opesator topologies in G_{m} coincide, since the strong and weak topologies on the unitary group in $L\left(L^{2}(m)\right)$ are the came and all L^{p} - weak operator topilosies coincide on thefompact set of doubly stochastic operators. It is not hard to set that the family of acts of the form

$$
\left\{r \sigma_{0} m\left(r\left(A_{1}\right) \Delta E\left(\Lambda_{1}\right)\right) \omega \varepsilon \text { for } 1=1, \ldots, n \text { and }\left\|\omega_{r}-\omega_{5}\right\|_{1}<\varepsilon\right\}
$$

where $E>O, \sigma \in G$ and A_{1}, \ldots, A_{n} is a partition of $[0,1]$ into subintervals is a neighborhood base for the strong operator topology in G.

In this papier we prove that the group G_{m} and a are topologically finitely generated (Theorem 1 and 2).
2. Invertible mensure-preserving trensiormations.

We will use following property of permutations
Lemma l. Let n be a natural number. The group of all permutations of $\{1, \ldots, 2 n\}$ is generated by the following two elements

$$
\alpha=\left(\begin{array}{ccc}
1,2, & \ldots . & 2 n \\
2,3, & \ldots & 1
\end{array}\right), \quad \beta=\left(\begin{array}{ccc}
1,2, & \ldots, n-1, n, n+1, & \ldots \\
2,3, & \ldots, & n, 1, n \\
3+1, & \ldots & 2 n
\end{array}\right)
$$

Proof. Since every permutation can be decomposed into transpositions, it suffies to show that α and β generate every transposition . l:oreover, because of the nature of α and β it is enough to prove that some transposition, es.
can be expressed as a composition of α and β. In fact it is not hard to see that $X=\alpha^{n-1} \beta \alpha^{n} \beta$.

For $a \in[0,1]$ we write $\alpha_{a}(t)=t+a(\bmod 1)$. Moreover, wt define

$$
\beta_{a}(t)= \begin{cases}t+a & \operatorname{mad} 1 / 2 \\ t & \\ \text { for } 0 \leqslant t<1 / 2 \\ \text { for } 1 / 2 \leqslant t \leqslant 1\end{cases}
$$

Obviously $\quad \alpha_{a}, \beta_{a} \in G_{m}$.
Theorem 1. Let a end b be irrational numbers. Then the group generated by α_{a} and β_{b} is dense in G_{m}.
roof. It is easy to see that for every real number c, the transformations α_{c} and β_{c} belong to the . closure ∂_{m} in G_{m} of the
group generated by α_{a} and β_{b}.
Now given $n \in \mathbb{N}$, we partition $[0,1]$ into $2 n$ subintervals of equal length. It is sufficient to show that \mathcal{Y}_{m} contains every piecewise linear transformation ξ which permutes these subintervals. From Lemma 1 we can express ξ as a certain composition of transformations α_{c} and β_{c} for $0=1 / 2 n$.

3. Invertible transformations -

Let I_{1}, \ldots, I_{n} and J_{1}, \ldots, J_{n} be partitions of the interval $[0,1]$ into subintervals. The notation $\varphi: I_{1} \rightarrow J_{1}, \ldots, I_{n} \rightarrow J_{n}$ will mean that φ is the piecewise linear transformation that maps I_{i} linearly (with positive slope) onto J_{i} for all $1 \leqslant n$. Now for $a \in[0,1]$ and $b>0$ we define $\varphi_{a, b}$: $[0, a /(b+1)] \rightarrow[0, a b /(b+1)],(a /(b+1), a] \rightarrow(a b /(b+1), a]$, $(a, 1] \rightarrow(a, 1]$. Note that the first interval is stretched and the second is shrunk by the factor of b. Let \mathcal{Y} denote the group generated by G_{m} and ψ where $\psi=\varphi_{1 / 4,2}{ }^{\circ} \alpha_{1 / 2} \circ \varphi_{1 / 4,3} \circ \propto \alpha_{1 / 2}$: $[0,1 / 12) \rightarrow[0,1 / 6),[1 / 12,1 / 4) \rightarrow[1 / 6,1 / 4)$,
$[1 / 4,1 / 2) \rightarrow[1 / 4,1 / 2),[1 / 2,5 / 16) \rightarrow[1 / 2,11 / 16)$. $[y / 16,3 / 4) \rightarrow[11 / 16,3 / 4),[3 / 4,1] \rightarrow[3 / 4,1]$.

Lemma 2. Let $e \in[0,1]$. 'men $f_{a, 2}$ - 'fays belong to Hi.

Proof. We may assume that $a \leqslant 1 / 12$ (since $G_{m} \subset J i$, several conjugates of φ can be composed together. if necessary). Let $\xi \in G_{m}$ be defined by ξ : $[0,1 / 6) \rightarrow[1 / 12+2 a),[2 a+1 / 4,1 / 6,2 a+1 / 4] \rightarrow[0,2 a+1 / 12)$, $[2 a+1 / 4,1 / 2) \rightarrow[2 a+1 / 4,1 / 2),[1 / 2,11 / 16) \rightarrow[9 / 16,3 / 4)$. $[11 / 16,3 / 4) \rightarrow[1 / 2,9 / 16),[3 / 4,1] \rightarrow[3 / 4,1]$. The transformation $\varphi=\psi\} \psi$ transforms linear intervals $I_{1}=(1 / 12-a, 1 / 12)$ and $I_{2}=(1 / 4,1 / 4+2 a)$ onto $(1 / 4,2 a+1 / 4)$ and $(1 / 6, a+1 / 6)$, respectively. It is easy to check that for all intervals I with $\operatorname{In}\left(I_{q} \sim I_{2}\right)=\varnothing$ we have $m(\varphi(I))=m(I)$. This implies the existence of two transformations $\boldsymbol{\zeta}_{1}, \boldsymbol{\zeta}_{2} \in G_{m}$ such that $\varphi_{a, 2}=\xi_{1} \varphi \xi_{2}$. Therefore we obtain $\varphi_{a, 2} \in \mathcal{H}$. By analoguous arisuments , $\varphi_{a, 3} \in \mathcal{H}$.

Lemma 3. If $\mathcal{S}_{\varepsilon, b}, \varphi_{a, c} \in \mathcal{H}$ for all $a \in[0,1]$ and come $b, c>0$, then $\varphi a, b c \in \mathcal{H}$ for $a l l a \in[0,1]$.

Proof. Let $\delta>0$ be such that $\delta(b+1)(c+1) \leqslant 1 / 2$. We put $\eta=\varphi_{b+1, b} \circ \alpha_{1 / 2} \cup \varphi_{b c+1, c} \circ \alpha_{1 / 2}$: $[u, \delta] \rightarrow[0, \delta b],(\delta, \delta(b+1)] \rightarrow(\delta b, \delta(b+1)]$, $(\delta(b+1), 1 / 2] \rightarrow(\delta(b+1), 1 / 2],(1 / 2, \delta b+1 / 2] \rightarrow(1 / 2, \delta b c+1 / 2]$,

61
$(5 b+1 / 2, b(c+1)+1 / 2] \rightarrow(\delta b c+1 / 2, b(c+1)+1 / 2]$,
$(\delta b(c+1)+1 / 2,1] \rightarrow(\delta b(c+1)+1 / 2,1]$. We have
Let now $\xi_{\mathcal{E}} \in G_{m}$ be defined by $\xi:[0, \delta b) \rightarrow(1 / 2, \delta b+1 / 2)$, $[\delta b, \delta(v+1)) \rightarrow[0, \delta),[\delta(b+1), 1 / 2) \rightarrow[\delta(b+1), 1 / 2)$, $[1 / 2, \delta b c+1 / 2) \rightarrow[\delta b+1 / 2, \delta b(c+1)+1 / 2)$, $[\delta b c+1 / 2, \delta b(c+1)) \rightarrow[\delta, \delta(b+1))$ $[\delta b(c+1)+1 / 2,1] \rightarrow[\delta b(c+1)+1 / 2,1]$. The transformstion $\varphi=\eta$ 〇foŋ transforms $I_{1}=(0, \delta]$ and $I_{2}=(\delta b+1 / 2, \delta b(c+V+$ $1 / 2]$ onto $(1 / 2, \delta b c+1 / 2]$ and $(\delta b, \delta(b+1)]$ respectively, aud for intervale I with $\operatorname{In}\left(I_{1} \cup I_{2}\right)=\varnothing$ we have $n^{\prime}\left(\eta_{0} \lg _{y}(I)\right)=m(1)$.

corollary. The closure of \mathscr{H} contains all $G_{a, b}$ for $0 \leqslant a \leqslant 1$ and $b>0$.

Proof. The transformation $\oint a, b$ belongs to \mathcal{Y} if and only if $\int a, 1 / b$ belongs to $\begin{aligned} & \text { o ll since } ~ \\ & m\end{aligned}$. Therefore using Lemma 2 and Lemma 3 we obtain that $\mathcal{S}_{a, b} \in \mathcal{H}$ for $b=2^{k} / 3^{m}$ with $k, m \in \mathbb{N}$. Because the set $\left\{2^{k} / 3^{m}: k, m \in \mathbb{N}\right\}$ is dense in \mathbb{R}_{+}the proof is complete.

The following Proposition is implicitly contained in [3] we omit the proof.

Proposition. Let D be a dense subset of $[0,1]$. Then the family of all invertible transformations τ of the form $\tau: I_{1} \rightarrow J_{1}, \ldots, I_{n} \rightarrow J_{n}$, where $\left(I_{k}\right)$ and $\left(J_{k}\right)$ are partitions or $[0,1]$ into subintervals with endpoints in $D \cup\{0,1\}$. is dense in G.

Theorem 2. Let a, b be irretiond numbers. Then the croup generated by α_{a}, β_{b} and ψ ia denceir. G. proof. In view of Theorem 1 and lroposition it is sufficient to show that for every partitions $0=a_{0}<a_{1}<$ $<\ldots<a_{n+1}=1$ and $0=b_{0}<b_{1}<\ldots<b_{n+1}=1$ with a_{1}, b_{1} of the form $2^{k} / 3^{m}$ for $1 \leqslant i \leqslant n$ there exists a transfernation in $\mathscr{C l}$ which takes $\left[a_{i}, a_{i+1}\right]$ linearly onto $\left[b_{i}, b_{i+1}\right)$ for $i=1, \ldots, n$.

By the last corollary, we may Assu:se that $a_{n} \leqslant 1 / 4$ and $b_{n} \leq 1 / 4$.

How $\xi_{1}=\varphi_{a_{1}+b_{1}}, b_{1} / a_{1} \quad \operatorname{mapa}\left[0, a_{1}\right)$ onto $\left[0, b_{1}\right)$. The function $\varphi:\left[0, b_{1}\right) \rightarrow\left[0, b_{1}\right),\left[b_{1}, \delta_{1}\left(a_{2}\right)\right) \rightarrow\left[b_{1}, b_{2}\right)$, $\left[\xi_{1}\left(a_{2}\right), \xi_{1}\left(a_{2}\right)+b_{2}-b_{1}\right) \rightarrow\left[b_{2}, \xi_{1}\left(a_{2}\right)+b_{2}-b_{1},\right)$, $\left[\xi_{1}\left(a_{2}\right)+b_{2}-b_{1}, i\right] \rightarrow\left[\xi_{1}\left(a_{2}\right)+b_{2}-b_{1}, 1\right]$ clearly satisfies $\varphi=\sigma \varphi_{x, y} \tau$ for some $\sigma, r \in s_{m}$ and $x, y \in \mathbb{R}_{+}$and so $\varphi \in \partial l$. Therefore $\xi_{2}=\emptyset \xi_{1} \subset \mathcal{K}$ and it is easy to see that ξ_{2} takes $\left[a_{i}, \theta_{i+1}\right]$ onto $\left[b_{i}, b_{i+1}\right)$ for $1=0,1$. Continuing ${ }_{3}$ this process by induction, we can construct a transformation $\xi_{n} \in \mathcal{H}$ such that ξ_{n} takes $\left[a_{i}, a_{i+1}\right)$ onto $\left[b_{i}, b_{i+1}\right]$ for $1=0,1, \ldots, n$.

References

[1] J.R. Choksi and S. Kakutani . Kesiduality of ergodic measurable transformations and of ergodic transforinations which preserve an infinite measure , Indiana Univ. Math. J. 28 (1979) , 453-469
[2] A. Ionescu Tulcea, Ergodic properties of isometries in L^{p} spaces, $1<\mathrm{p}<\infty$, Bull. Amer. Lath. Soc. 70 (1964) 366-371
[3] A. Ionescu Tulcea, On the category of certain classes of transformations in ergodic theory , Trans. Amer. Math: Soc. 114 (1965) , 261-279
[4] A. Iwanik, Approximation theorems for stochastic operators, to appear in Indiana Univ. Math. J.

