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NINTH WINTER SCHOOL ON ABSTRACT ANALYSIS (1981)

ON HYPERGRAPH COVERINGS

a. Lshel

1.Telinitiona

& hypergraph B ig & ¢-2 o7 coff¥riat nor-espty
sabgeta called edges chozen “ro= es=é fi==te taric
set. The edge set of E is cezote2 bty E(E) ard the
basic set called vertex zct of E is dezotes ty Y(E)e

The section hypergrazr izdiced ty a ot & < V(E)
is a hypergraph with vertex get a and edse' set
{o € e(r) I OGA} o Tke partial hypergraul Znizced
by a set BEE'\B) 18 a Eperzren 10 A g sct s

azd the elements of tke v3 € ISy - *rrica EEL.

se iatrcduce the follcioung . .s&t.Cil

&K(H) = weak stability puszber = caciz.r srrz zality

0f a veskly stgble £3t of H = == ir .z nizber
Oof vertices contairing ro eiz ¢ =1 =i

g (8) = covering nuzber = zirimu= zu=ter cI adies £xu

Vertices vhosa vaioa Zs V(E);
S’.(E) = partition nuzber = nirimus ru=ber of pairuise

disjoint edges s-c veriicer with uzion V(H);
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) (B) = packing nuster = maximum nuzber of pairwise
disjoint edgeé of H; .
T(8) = transversal number = minimum rumber of vertices

neeting all edges of H.
A bypergraph is said to be r-uriform if its edges
contain just r vertices. sr r-uniforzm hypergraph with
vertex set V’ will be called complete if every r—-tuples
of A is an edge. The edge set & of ac r-uniform hyper-

graph is called Kn—f:-ee if no subset of E generates Kp

the r-unifcrm cozplete kypergraph of order p.
k v 0f -
The set {_8131___1 is calledka.K —cover of tke r
ur: form hypergraph EJ',E_) if O & 3 = & and
‘ i=l

every Si is a K_ or an edge; k will be czlled the

slze of this Kp-—cf;ver. A lp-cover with pairwise disjoint
elements is said to be a Kp—partition.

Let F te a given r-unifora Lypergragk. The F -hyper-
graph  H/F of az r-unifcrm hypergraph H is defined by

v(H/F) =EH)  aaa B (/P = (F'es(| F2F.

2eGenerzl results

Ve glve a survey of sore recent results concerning
various relations tetween hypergraph nurters defined atove.
Theorer 1. Lvery r-uciforz kypergrerh E sztisfies:

(B + (x-1)-V{E) = Jv@E) = (2 - T&) .
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By definition g(a) < ga('ﬂ) » however, in case of graphs
S’ =_? o Thus Theorem 1 has the following corollary:
Theorem (T.Gallai ['Z_'D.ﬁirery simple graph G satisfies:
$@)+ V(E) = Le) + ¥L6) .
1he next result is a possible hypergraph extension

of the well-known K¥nig’s theorem, however, its proof
(see in [3]) uses the x5nig-Hall theorem itself.
Theorem 2. If of(H?) 2 %—-lv{n')i “holds for every
section hypergraph H*.of H then Q(H) < o{(H) .

It is worth to note that the next two statement are
trivially equivalen;.:

(1) G((H’) 212‘- -,V(E'); for every section hypergraph

H’ of H ;
(11) L&) 2.% ‘lvea®)] for every partial hypergraph
H* of B .
Thus the condition in Theorem 2 may be replaced by (ii)
withouvt any consegquence.

The analogous problem of describirg poz-trivial
hypergraph classes with S’ <& seems to te a rather
hard question. Perhaps the first instance or this problem
was the well-known Ryser conjecture: .

If the vertex set of the r-uniform hypergraoh H is

partitionned into r classes so that every edge

contains . just one vertex from each clazses,i.e.. H is

an r-partite hypergraph, thex T&) < (r-1)  ¥&) .
By Theorem 1 T <(r-1)Y  iff P, <X trerefore

Ryser’s conjecture may be restated in the following form:
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Conjecture, r-partite hyperzraphs satisfy S’og.{ .

Hype he with <L

¥e present here hypergraph classes wlth property (1).
By Theorem 2 the hypergraphs belonging to theses classes
w1l satiafy §&d.

The 2-coloration of a hypergreph B iz a partition
of 'J(H) ipte two weskly stable sets immedlately implying
property (1) :

Theorem 3. 2-tolorable hypergraphs satisfy Q<oC.

The next observation certainly helongs to the folklore
of extremal graph theory:

More than the hslf of the odgee of an arbltrary

graph can be retained to form a bipartite partisl

graph. | .‘ |
This observation has the following conseguence (see in [I{_l):
Theorex 4. If Fis a graph with chrematic number greater
than 2 then for every graph G the P-bypergraph of G
satiefies g (G/F) "_-f o« (G/F) -

The observation a‘bofe tan be extended for hypergraphs
(see in [3-]) which yields our next result:

Theorem 5. For any 1<r<p the Kp—hypersraph of

every r-uniform hypergraph H satisfies g’(ﬂ/lp\, < d:(H/Kp\.

Remark that by the definitions Q(H/K,) is the oini-ua
glzo of a X_~cover of E and uC(H/Kpﬁ is the marimuz cardi-
nality of a Kp—free edge set of H.
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Theorem 5 answers a conjecture of B.Bollobis [1] :

Corollary. The edge set of every r-urniform hypergraph

of order n can be covered with at most T(m,p,r) Kp’s

and edges where T(n,p,Dis the extended Turin number,

i.e., the maximal number of edges an r-uniform hypérgraph
of order n can have if it does not contain a Ko

Theorem 5 may suggest the ql;estion whether the class
of Kp-hyperlgraphs satisfy the stronger - S,,SOC. The answer
is not known even if .r=2 and p=3 except some special
cases settled by 25.Tuza. Let?s remark nﬁélly that the
analogous question 6n'2—co;orahle hypergraphs has a
‘negative answer; ‘P; the r-uniform hyperéraph of the
. finite projective plane minus one line may be an example
which is clearly 2-colorable with weak stability number

r2-2r+1 smaller than the partition number rl-2r+2.
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