USA 9

Jiří Souček; Vladimír Souček; V. Janiš

Feynman path integral as spectral decomposition

In: Zdeněk Frolík (ed.): Abstracta. 9th Winter School on Abstract Analysis. Czechoslovak Academy of Sciences, Praha, 1981. pp. 158--167.

Persistent URL: http://dml.cz/dmlcz/701247

Terms of use:

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project $D M L-C Z$: The Czech Digital Mathematics Library http://project.dml.cz

Peynman path integral as spectral decomposition
J. Souček, V. Souček, V. Janib̆

In previous lecture we introduced the Fock-Stueckelberg space \mathscr{K} and the propegator \mathcal{K} on it. Now we shall try to give another representation of the operator \mathscr{K} which does not depend on the splitting of \mathcal{K} in \mathcal{K}_{0} and \mathcal{I} but is completely determined by classisal action (or by Lagrangian). We also hint to the connection of this formulation of QrT with Feynman path integral.

For simplicity of our considerations we shall assume only the theory of one scalar field, i.e. the Lagrangian

$$
\begin{equation*}
\mathcal{L}(\varphi, x)=\frac{1}{2}\left[\left(\partial_{\mu} \varphi(x)\right)^{2}-m^{2} \varphi^{2}(x)\right]-\frac{\lambda}{4} \varphi^{4}(x)-J(x) \varphi(x), \tag{1}
\end{equation*}
$$

we also take into account the external source $J(x)$. Quantization in our formalism is a construction of operator \mathcal{K} on space \mathscr{H}. The construction of this operator from classical lagrangian we shall call the 'kinematical quantization'. The procedure performs as follows
a/ to the classical field $\varphi(\dot{x})$ assign the operator distribution ϕ_{x} on \mathscr{H} which has the expression in creation and anihilation operators from previous lecture

$$
\varphi(x) \rightarrow \phi_{x}=\frac{1}{\mu_{0}}\left(a_{x}^{+}+a_{x}\right)=\phi_{x}^{+}+\phi_{x}^{-}
$$

with μ_{0} being a massive parameter appeared only due to dimensional reasoning (i.e. the action is dimensionless). That will be finally removed from the theory. Its interpretation will be clear later on.
b/ construct the operator \mathcal{K} from quantum action in the manner

$$
\mathscr{K}=\exp \left\{1 \mathcal{A}_{Q}\right\}=\exp \left\{i \int \mathrm{~d}^{4} x \mathscr{L}\left(\phi_{x}\right)\right\}
$$

We emphasize here that ϕ_{x} is a distributive operator and derivatives act on ϕ_{x} in similar way as on number-valued distributions. Due to distributive character of ϕ_{x} quantum actin has not proper mathematical meaning without renormalication or without regularizing the theory. We do not want to treat these problems here.

From the previous lecture we know the interpretation of matrix elements of \mathscr{K} - they are just Green's functions G

$$
\begin{equation*}
\dot{G}_{\mu_{0}}\left(x_{1}, \ldots x_{n}\right)=\langle 0| \phi_{x_{1}} \ldots \phi_{x_{n}} \mathcal{K}|0\rangle \tag{2}
\end{equation*}
$$

we added the index μ_{0} to a matrix element to express explicitmy the dependence on parameter μ. We prove

$$
\begin{equation*}
G\left(x_{1}, \ldots x_{n}\right)=\lim _{\mu_{0} \rightarrow 0} G_{\mu_{0}}\left(x_{1}, \ldots x_{n}\right) \tag{3}
\end{equation*}
$$

to be valid nonpertarbatively from the equations of motion, i.e. equations for Green's functions. Knowing commutation rerations and expression for \mathcal{K} in ϕ_{x} we derive the quantum equations of motion for operator \mathscr{K}. From following commataion relations

$$
\begin{equation*}
\left[\phi_{x}^{-}, \phi_{y}^{+}\right]=\frac{1}{\mu_{0}^{2}} \delta(x-y) \quad, \quad\left[\phi_{x}, \phi_{y}\right]=0 \tag{4}
\end{equation*}
$$

we obtain $\phi_{x} \mathscr{K}=\phi_{x}^{+} \mathscr{K}+\mathcal{K} \phi_{x}^{-}+i\left[\phi_{x}^{-}, \mathcal{A}\right]$
From definition of \mathcal{A} we have

$$
\begin{align*}
& {\left[\phi_{x}^{-}, A\right]=-\frac{1}{\mu_{0}^{2}}\left[\left(\partial^{2}+m^{2}\right) \phi_{x}+\lambda \phi_{x}^{3}+J(x)\right] \text {, i.e. }} \\
& {\left[\left(\partial^{2}-1 \mu_{0}^{2}+m^{2}\right) \phi_{x}+\lambda \phi_{x}^{3}+J(x)\right] \mathscr{K}=-1 \mu_{0}^{2}\left(\phi_{x}^{+} \mathcal{K}+\mathcal{K} \phi_{x}^{-}\right)} \tag{5}
\end{align*}
$$

which are equations of motion for \mathcal{K} that is understood to be
a functional of ϕ_{I} and $J(x)$. These operator equations are compartly represented equations for Green's functions. From (2) and (5) follows

$$
\begin{align*}
& \left(\partial_{x}^{2}-i \mu_{0}^{2}+m^{2}\right) G_{\mu_{0}}\left(x, x_{1}, \ldots x_{n}\right)+\lambda G_{\mu_{0}}\left(x, x, x, x_{1}, \ldots x_{n}\right)+ \\
& +J(x) G_{\mu_{0}}\left(x_{1}, \ldots x_{n}\right)=-i \sum_{k=1}^{n} \delta\left(x-x_{k}\right) G_{\mu_{0}}\left(x_{1}, \ldots x_{k-1}, x_{k+1}, \ldots x_{n}\right), \tag{6}
\end{align*}
$$

having in mind the limiting process $\mu_{\rightarrow} \rightarrow 0$, (6) are the equations for Green's functions. (6) make clear the interpretation of M, being the Feynman causal \mathcal{E}.

To restore the generating functional from \mathcal{K}^{K} we use spectrail decomposition in a special basis (Feynman basis). Since $\left[\phi_{x}, \phi_{y}\right]=0$ and we suppose ϕ_{x} to be an irreducible ring of operators, we can choose the basis that diagonalizes ϕ_{x} simultaneously, 1.e. $\phi_{x}|\varphi\rangle=\varphi(x)|\varphi\rangle, \varphi(x) \in \varphi^{\prime}\left(\mathbb{R}^{4}\right)$, where $\varphi(x)$ is called classical configuration. Such basis is not from \mathscr{H}, as ϕ_{x} are distributive operators, so $|\varphi\rangle$ lie in some suitable extension of \mathcal{H}. In Feynman basis we can formally introduce the projector measure

$$
[d \varphi]|\varphi\rangle\langle\varphi|=|\varphi\rangle\langle\varphi| \prod_{x \in \mathbb{R}^{4}} d \varphi(x)
$$

in this measure the decomposition of unity is

$$
1=\int|\varphi\rangle\langle\varphi|[d \varphi]
$$

ortogonality $\left.\left\langle\varphi \mid \varphi^{\prime}\right\rangle=\delta\left(\varphi \mid \varphi^{\prime}\right), \int\left[d \varphi^{\prime}\right] \psi\left(\varphi^{\prime}\right) \delta-\mid \varphi^{\prime}\right)-\psi(\psi)$
A vector from \mathscr{H} we can represent by the vector measure

$$
|\psi\rangle=\int[d \varphi] \psi(\varphi)|\varphi\rangle \quad, \quad \psi(\varphi)=\langle\varphi i \psi\rangle
$$

Operator \mathcal{K} has the spectral decomposition

$$
\mathscr{K}=\int e^{i \mathcal{A}(\varphi, J)}|\varphi\rangle\langle\varphi|[d \varphi]
$$

and the generating functional \mathcal{Z} (we let $\lambda=0^{\circ}$ in (1)) is

$$
\mathcal{Z}(J)=\langle 0| \mathcal{K}|0\rangle=\int \mathrm{e}^{i \mathcal{A}(\varphi, J)} \mid\langle 0 \mid \varphi\rangle^{2}\left[(\varphi]=\int \mathrm{e}^{i \mathcal{A}(\varphi, J)} d \mu(\varphi),\right.
$$

where $d \mu(\varphi)$ is Feynman measure. To obtain it we use the definition of virtual momentum $\pi_{x}:\left[\pi_{x}, \phi_{y}\right]=-i \delta(x-y)$.
From (4) and (7) we get

$$
\begin{equation*}
\pi_{x}=\frac{-1 \mu_{0}^{2}}{2}\left(\phi_{x}^{-}-\phi_{x}^{+}\right), \quad \phi_{x}^{-}=\frac{1}{2}\left(\frac{2 i}{\mu_{0}^{2}} \pi_{x}+\phi_{x}\right) \tag{8}
\end{equation*}
$$

Vacuum is characterized $\quad \phi_{x}^{-}|0\rangle=0$ 。
Using the representation of a state in Feynman basis we have

$$
\begin{aligned}
& |0\rangle=\int[d \varphi] \psi_{0}(\varphi)|\varphi\rangle \quad \text { and } \quad \phi_{x}|0\rangle=\int[d \varphi] \varphi(x) \psi_{0}(\varphi)|\varphi\rangle, \\
& \pi_{x}|0\rangle=\int[d \varphi]\left(\frac{-1 \delta}{\delta((x)} \psi_{0}(\varphi)\right)|\varphi\rangle \quad \text {.From (8) and (9) we ha- }
\end{aligned}
$$

Fe in Feynman basis the functional equation

$$
\varphi(x)+\frac{2}{\mu_{0}^{2}} \frac{\delta}{\delta \varphi(x)} \psi_{0}(\varphi)=0
$$

with solution $\psi_{0}(\varphi)=\exp \left\{-\frac{\mu_{0}^{2}}{4} \int \varphi^{2}(x) d^{4} x\right\}$. Thus generating functional is expressed

$$
\mathcal{Z}(J)=\int e^{i \mathcal{A}(\varphi, J)} \exp \left\{-\frac{\mu_{0}^{2}}{2} \int \varphi{ }^{2}(x) d^{4} x\right\}[d \varphi]
$$

which is just the Feynman's path integral representation for generating functional $/ 1 /$ with $\mu_{0} \rightarrow 0$. Green's functions ard obtaine by functional derivating that gives the functions delined by (2) and (3).

Literature
/1/ E.S. Abers, B.W. Lee Phys. Rep. Cg (1973) 1

Manifestly covariant equivalent to quantum field theory J. Souček, V. Souček, V. Janis

In 1942 E.C. Stueckelberg /1/ made an attempt to formelate quantum mechanics in a covariant space of wave functions ψ, i.e. he used the four-interval normalization of $\psi(x), x \in X$ (in is Ninkowski space): $\int|\psi(x)|^{2} \mathrm{~d}^{4} x=1$. The space spanned on such functions forms $I_{2}(i n)$ and we call it the Stueckelberg space. In 1949 R.P. Feynman /2/ developed the method of dagrams which is up to now the basic ingredient of the quantum field theory (QFT). Feynman started with the formula

$$
\begin{equation*}
K(1 \mid 2)=E_{0}(1 \mid 2)+i e \int d^{4} 3 K(13) V(3) K(3 \mid 2)+\ldots \tag{1}
\end{equation*}
$$

where $\mathrm{K}(1 \mid 2)$ is the total propagator of a particle from 1 to 2 ($1,2 \in \mathrm{M}), \mathrm{K}_{\mathrm{O}}(1 \mid 2)$ is a free propagator of a particle, $\nabla(3)$ is an interaction. We now shall try to generalize (1) for many-partical case, i.e. $K, K_{0} \rightarrow \widetilde{K}_{\mathcal{K}}, \widetilde{K}_{0}$ operators on Fock-Stueckelberg space. This generalization looks like

$$
\left.\widetilde{K}=\tilde{K}_{0}+\frac{1 \mathrm{e}}{1!} \tilde{K}_{0} \tilde{\mathscr{Y}} \tilde{K}_{0}+\frac{(1 \mathrm{e}}{}\right)^{2} \tilde{K_{0}} \tilde{\mathscr{Y}} \tilde{K}_{0} \tilde{\mathscr{Y}} \tilde{K}_{0}
$$

$$
+\ldots=e^{\tilde{\mathcal{K}}_{0} \tilde{J}_{\mathcal{K}_{0}}}(c)
$$

and has the same Feynman interpretation for many particles as (1) for one particle.

The Fock-Stueckelberg space is constructed from Stueckelberg spaces $H_{S}=L_{2}\left({ }^{2}\right)$:

$$
\mathscr{H}_{\mathrm{FS}}=\sum_{n=C}^{\infty} \oplus H_{n}, \quad H_{n}=\sum_{k=1}^{n} H_{S}^{n} H_{S} \text { for bosons }
$$

Θ, Λ are symetrized and antisymetrized tensor products.
H_{0} is zero particle state with scalars (C numbers). As usualIf we introduce creation and anihilaiion operators (operator distributions) : a_{x}, a_{x}^{+}with commutation relations $\left[a_{x}, a_{y}^{+}\right]=\delta^{(4)}(x-y$ $x, y \in \mathbb{H}$. If $|0\rangle$ is from H_{0} with $a_{x}|c\rangle=0$, then $\mathcal{H}_{P S}$ is spanned on $|0\rangle, a_{x_{1}}^{+}, \ldots, a_{x_{n}}^{+}|0\rangle, n=1,2, \ldots$. We shall use the suitable multipoint notation 8

$$
\begin{aligned}
& \mathbb{M}^{(n)}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}, \ldots, x_{n} \in \mathbb{M}\right\}, \\
& \mathbb{M}^{P}=\bigcup_{n=0}^{\infty} \mathbb{N}^{(n)}, \mathbb{k}^{P} \text { is Fock-Minkovski space }, \\
& a_{x}=(n!)^{-\frac{1}{2} \cdot a_{x_{n}} \ldots a_{x_{1}}, \quad x=\left(x_{1}, \ldots, x_{n}\right) M^{P}}
\end{aligned}
$$

and we shall also use the Einstein's summation rule - summing (integrating) over all double repeated (not appeared in parenthesis) indexes. The completeness relations for $\mathscr{H}_{\text {FD }}$ can be put down as

$$
\begin{equation*}
\mathbb{1}=a_{y}^{+}|0\rangle\langle 0| a_{x}^{-} \delta(y \mid x)=a_{x}^{+}|0\rangle\langle 0| a_{x}, \tag{3}
\end{equation*}
$$

with $\delta(y \mid x)=\langle 0| a_{y} a_{x}^{+}|0\rangle, x, y \quad w^{F}$. The many particle wave function ψ on $\mathscr{H}_{F S}$ will be $\psi(x)=\langle x \mid \psi\rangle$, $x \in \mathbb{M}^{\mathbb{F}}$ or $|\psi\rangle=\psi(x)|x\rangle,|x\rangle=a_{x}^{+}|0\rangle$. We must emphasize here that $\psi(x)$ has interpretation as multiparticle amplitude for states localized in spacetime points $/ 3 /$, i.e. it describes the virtual states of the physical particles. Among these firdual states exist also the physical states, that means - physsisal states firm a subspace $\mathscr{H}_{\text {phys }}$ of $\mathscr{H}_{\text {rS }}$. $\mathscr{H}_{\text {phys }}$ is spanned on states $\left.|\vec{p}, \omega\langle\vec{p}\rangle\rangle=a_{\vec{p}, \omega}^{+}|c\rangle=e^{-i p x} a_{x}^{+}|c\rangle, p_{0}=\omega \vec{p}\right), \omega\left(\vec{p} \mid=\sqrt{\vec{p}^{2}+m^{2}}\right.$, $\vec{p} \in \mathbb{R}^{3}, i . e$. on states with correct dispersion relation for fourmomentum. Now we are able to i define the operator \mathcal{K}_{0}. We want
$\langle y| \mathcal{K}_{0}|x\rangle, x, y \in I^{\prime}$ to be the transition amplitude of many-particle state $|x\rangle$ to many-particle state $|y\rangle$. When \mathcal{K}_{0} is a free propagator, then it must be diagonal (preserving the particle number), so we write

$$
\begin{aligned}
\mathcal{K}_{0} & =a_{y}^{+}|y\rangle\langle x| \dot{a}_{x} \mathcal{K}_{0}(y \mid x), x, y \in \mathbb{K}^{F}, \\
K_{0}(y \mid x) & =\delta_{y|,|x|} K_{0}\left(y_{1} \mid x_{1}\right) \ldots K_{0}\left(y_{|x|} \mid x_{\mid x}\right)
\end{aligned}
$$

where $|x|$ is a lengith of a rultipoint x (number of components), $X_{0}\left(y_{1} \mid x_{1}\right)$ is a complex function. To define the full propagator $\overline{\mathcal{K}}$ we are to define an operator of interaction $\widetilde{\mathcal{J}}$. It will certainly be that changing the number of particles in the process. The general form of $\tilde{\mathcal{Y}}$ is $\tilde{\boldsymbol{y}}=a_{y}^{+} J(y \mid x) a_{x}, x, y \in \tilde{\mu}^{r}$, where $J(y \mid x)$ is some integral kernel (may be nonlocal). To restore the formula (2)i.e. the full propagator is a sum of succesive iterations - particles are propagated freely, then some of them interact and interacted particles again are freely propagated; we must introduce a new isomorfic copy $\widetilde{H}_{F S}$ of $\mathscr{H}_{F S}$ and their tensor product $\mathscr{H}=\mathscr{H}_{\text {FS }} \otimes \tilde{\mathscr{H}}_{\text {FS }}$. We shall denote $\tilde{a}_{x}, \tilde{a}_{x}^{+}$ anihilation and creation operators in $\tilde{\mathscr{H}}_{\text {FS }}$ and identify $a_{x}^{+} \otimes \tilde{i} \rightarrow a_{x}^{+}$ $1 \otimes \tilde{a}_{x}^{q} \rightarrow \tilde{a}_{x}^{+},|c\rangle \otimes|\tilde{0}\rangle \rightarrow|0\rangle$ whenever confusion is excluded. The operator \mathscr{K}_{0} will be now the operator \tilde{K}_{0}

$$
\tilde{\mathscr{K}}_{0}=a_{y}^{+} \mathbb{P}_{0} \tilde{a}_{x} \mathcal{K}_{0}(v \mid x), \mathbb{P}_{0}=1 \otimes|0\rangle\langle\tilde{0}|
$$

that transforms particles from $\tilde{\mathscr{H}}_{F S}$ (in-space) into $\mathscr{H}_{F S}$ (out-space) leaving $\mathscr{H}_{F S}$ without change. Interaction operator is then modified in the way $\tilde{\mathcal{Y}}=\tilde{a}_{y}^{+} J(J \mid x) a_{x} . F r o m \tilde{K}_{0}$ and $\tilde{\mathcal{J}}_{\text {we construct }}$ the formula (2) having in mind the in-states are from $\tilde{\mathscr{H}}_{\text {FS }}$, out-states are from \mathscr{H} FS . Latrix element or operaior $\underset{\mathcal{K}}{\tilde{K}}$. its u-th iteration is given
$(n!) u_{f 1}=\langle 0| a_{f} \tilde{K}_{0} \tilde{\mathcal{Y}} \tilde{K}_{0} \ldots \tilde{\mathcal{Y}} \tilde{K}_{0} \tilde{a}_{1}^{+}|0\rangle=\langle u| a_{f} \ldots a_{y_{k}}^{+} K_{0}\left(y_{k} \mid x_{k}\right) x$ $x \mathbb{P}_{0} \tilde{a}_{x_{k}} \tilde{a}_{u_{k}}^{+} P_{0} J\left(u_{k} \mid v_{k}\right) a_{v_{k}} \ldots \tilde{a}_{i}^{+}|0\rangle=\langle 0| a_{f} \ldots a_{y_{k}}^{+} \mathcal{K}_{0}\left(v_{k} \mid x_{k}\right) J\left(x_{k} \mid v_{k}\right)$ $a_{\nabla_{k}} \cdots a_{x_{n}}^{+} \mathcal{K}_{b}\left(x_{n} \mid 1\right)|0\rangle$.
where we used the definition of the projector P_{0}. We define a dressed creation operator $a_{x}^{(+)}=a_{y}^{+} \mathcal{F}_{0}^{(}(x)$ and a left dressed interaction operator $\mathcal{Y}^{(d r)}=a_{y}^{(+)} J\left(y(x) a_{x}\right.$. Then $(n!) H_{f i}=\langle U| a_{f} \sigma^{(d r)} \ldots y^{(d r)} a_{i}^{(t)}|0\rangle$, hence $\dot{K}=e^{j} \mathscr{K}_{0} \mathscr{K}_{0}$, when out and in states are from $\mathscr{H}_{F S}$ (instates are not dressed). That means, if we are interested in matrix elements of \mathcal{K} only (i.e. in transition amplitudes) the space $\mathscr{H}_{E S} 1$ is sufficient.

How we show what K_{0} and J give the results of canonical
QPT; give the same Green's functions.
17) Neutral_scalar field -
we choose $K_{0}(x \mid y)=1 D_{p}(x-y), V_{F}$ is Feynman causal propagator, $\because \quad \ddot{\tilde{y}}=\lambda \int \mathrm{d}^{4} x\left(a_{x^{\prime}}+\tilde{a}^{+}\right)^{4}$. This leads to $y^{(d x)}=\lambda \int \mathrm{d}^{4} x: \phi_{x}^{4}:, \phi_{x}=\left(\mathrm{a}_{\mathrm{x}}+\mathrm{E}_{\mathrm{x}}^{(+)}\right)$: : are Wick doubledots. We shall denote canonical QFT quantities by ${ }^{\wedge}$, so $\hat{\phi}_{x}$ will be the quantum field in interaction representation. The green's function in n-th order of perturbation series is ($n 1$) $\hat{⿲}_{f i}=\lambda^{n}\langle 0| \pi\left[\hat{\phi}_{f_{4}} \ldots \hat{\phi}_{f_{\mid f 1}}: \hat{\phi}_{1}^{4}: \ldots: \hat{\phi}_{n}^{4}: \hat{\phi}_{1} \ldots \hat{\phi}_{1}{ }_{|1|}|0\rangle\right.$. This expression equals to all chronological contractions (Tick's theorem). The element $u_{f i}$ in our theory

$$
\langle n!) u_{f 1}=\langle c| \phi_{f_{1}} \ldots: \phi_{1}^{4}::::: \phi_{n}^{4}: \ldots \phi_{i_{1}}|0\rangle \lambda^{n}
$$

is equal to the sum of all normal contractions. But
$\widehat{\phi_{1} \phi_{2}}=\langle u| \phi_{1} \phi_{2}|0\rangle=\langle c| a_{1} a_{2}^{+}|\dot{0}\rangle=1 D_{F}(1-2)=\langle u| T\left[\phi_{1} \phi_{2}\right]|u\rangle=$
 2/ Q_E_D

Several changes must be done in this theory. Firstly, we must introduce a new space \mathscr{H} for antiparticles with operators b_{x}, b_{x}^{+}. Now, fields a_{x}, b_{x} are fermionic, the anticommutaters must be considered. All formulas remain valid, only $\delta(y \mid x)$ in (3) has different dependence on arguments - the signum of permutation must be considered. Thus we have three particles - electrons and positrons as fermions and photons as bosons with /anti/ commutation relations

$$
\left[a_{x}, a_{y}^{+}\right]_{+}=\left[b_{x}, b_{y}^{+}\right]_{+}=\delta^{(4)}(x-y),\left[c_{x \mu}, c_{y \nu}^{+}\right]=g_{\mu \nu} \delta(4(x-y) .
$$

The choice for free propagators and interaction is

$$
K_{0}(x \mid y)=i S_{p}(x-y), \bar{X}_{0}(x \mid y)=-i S_{p}^{T}(y-x), D_{o \mu v}(x \mid y)=1 D_{p_{\mu}}(x-y),
$$

where T is transposition of spinor indexes which are suppleseed. K_{0} propagates electrons, \bar{X}_{0} positrons, D_{0} photons.
$\tilde{y}=1 e \int \mathrm{~d}^{4} x\left(\tilde{b}_{x}+\tilde{a}_{x}^{+}\right) y^{\mu}\left(a_{x}+\tilde{b}_{x}^{+}\right)\left(\tilde{c}_{x \mu}^{+}+c_{x}\right)$ giving
$y^{(d r)}=1 e \int d^{4} x_{x}: \bar{\psi}_{x} \gamma^{\mu} \psi_{x} A_{x} \omega^{z}$, with $\psi_{x}=\left(a_{x}+b_{x}^{(t)}\right)$,
$\bar{\psi}_{x}=\left(b_{x}+a_{x}^{(+)}\right), A_{x \mu}=\left(c_{x \mu}+c_{x \mu}^{(+)}\right)$. The same arguments show the equality of Green's functions in both theories.

At the end of this lecture we show formula (2)reduces to (1) in the case of one particle in external field. Starting with $\left.y^{(d r)}=1 \lambda \int d^{4} x V_{x}\right):\left(a_{x}+b_{x}^{(+)}\right)\left(b_{x}+a_{x}^{(+)}\right)$, denoting $y_{(d r)}^{(I S)} i \lambda \int d^{4} x V_{(x)} a_{x}^{+} a_{x}$ we have

$$
\frac{\langle c| a_{f} e^{(d r)} a_{1}^{(+)}|0\rangle}{\langle c| e^{y^{2}}|0\rangle}=\sum_{n=0}^{\infty} \frac{1}{n!} \frac{\langle c| a_{f}\left[y^{d r}\right]^{n} a_{1}^{(+)}|0\rangle}{\langle c| e^{y^{c h}}|0\rangle}=\sum_{n=C}^{\infty} \sum_{k=0}^{n} \frac{1}{n!}\binom{n}{k} x
$$

$$
\begin{aligned}
& =\langle 0| a_{f}\left[1-X_{0} y^{(L S)}\right]-1 \mathcal{K}_{0} a_{i}^{+}|0\rangle \text {, }
\end{aligned}
$$

where $\left\rangle_{c}\right.$ denotes connected graplis. This proves thei correct reduction of (2) to (1) in this case.

Literature :
/1/ E.C. Stueckelberg Helv. Phys. Acta 15194223
/2/ R.P. Feynman Phys. Rev. 761949749
/3/ P.T. Kathews, A. Salam Proc. Royal Soc. A221 195423

