USA 10

Vojtěch Rödl

Note on packing and covering Turán numbers

In: Zdeněk Frolík (ed.): Proceedings of the 10th Winter School on Abstract Analysis. Circolo Matematico di Palermo, Palermo, 1982. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplements No. 2. pp. [263]--265.

Persistent URL: http://dml.cz/dmlcz/701280

Terms of use:

© Circolo Matematico di Palermo, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

NOTE UN FACKING COVERING AND TUR A_{N} NUUBERS

Vojtěch Rüal

The aim of this communication is to ive a brief sucmary of work on packing and covering to be published in detail elsewhere [4]. We also give some related remarks concerning Turun numbers.
Let $2 \leqslant \ell<k<m$ be positive integers,a family F of kelement subsets of m set V is called l-sparse if every two members of F intersect in less than l elements (i.e. if every l-element subset of V is in at most one member of \mathcal{F}) On the other hand we say that \mathcal{F}^{\prime} is l-dense if every l-element subset of V is contained in at least one member of \mathcal{F}^{\prime}. It is wellknown (see e.g. $\left.[2,3]\right)$ that

$$
\begin{equation*}
|F| \leq \frac{\binom{n}{l}}{\binom{\ell}{l}} \leq\left|F^{\prime}\right| \tag{1}
\end{equation*}
$$

for any l-sparse fawily \mathcal{F} and l-aense family $\mathcal{F}^{\prime} \mathcal{F}_{1} \mathcal{F}^{\prime} \subset[V]^{k}$. Deriote by $M(m, k, l)$ the minimal number of elements of l-dense family $F^{\prime} \subset[V]^{k}$ and by $m(n, k, l)$ the maximal number of elements of ℓ-sparse family $\mathcal{F} \subset[V]^{k}$. It follows immediately from (1)tinat

$$
\begin{equation*}
m(n, k, l) \leq \frac{\binom{n}{l}}{\binom{k}{l}} \leq M(n, k, l) \tag{2}
\end{equation*}
$$

In 1963 P.Erdus and H.Hanani[1]conjectured that both
and

$$
\left.\begin{array}{l}
M(n, k, l)=\frac{\binom{n}{l}}{\binom{k}{l}}(1+o(1)) \tag{3}\\
m(n, k, l)=\frac{\binom{n}{l}}{\binom{k}{l}}(1+o(1))
\end{array}\right\}
$$

holds. Here and below $o(1)$ is a function tending to zero as m
tends to infinity .
They proved (3) for $l=2$ and all k and for $l=3, k=p$ or $p+1$, where p is prime power.
It was further shown by Erdös and Spencer [2] that

$$
M(x, k, l) \leqslant \frac{\binom{n}{l}}{\binom{k}{l}}\left(1+\log \binom{k}{l}\right)
$$

The numbers $M(n, k, l)$ and $m(n, k, l)$ axe related to rurán number $T(n, k, l),[6]-$ for $2 \leqslant l<k<m$ denote by $T(n, k, l)$ the smallest q such that there exists a family G of $q \quad l$-subsets of an n-set V with no independent set of size k. lt was noted in [2], that

$$
m(n, k, l) \geqslant \frac{T(n, k, l)}{\binom{k}{l}}
$$

The functions M, m have been also studied by J.Schonheim [5]. We can prove (3) for all $2 \leq \ell<k<n$ and thus the following holds;

Theorem: : Let $2 \leqslant \ell<k<m$ be positive integers. Then

$$
\begin{aligned}
& M(n, k, l)=\frac{\binom{n}{l}}{\binom{k}{l}}(1+o(1)) \\
& m(n, k, l)=\frac{\binom{n}{l}}{\binom{k}{l}}(1+o(1))
\end{aligned}
$$

The proof of this theorem is going to appear in [4]. Our Theorem has the following
Corollary: Let $2 \leq l<k<m$ be positive integers, then

$$
T(n, n-l, k-l)=\frac{\binom{n}{l}}{\binom{k}{l}}(1+o(1))
$$

Proof: Take an l-dense family \mathcal{F} of k-sets of an reset V (ie. $\mathcal{F} \subset[V]^{h}$) such that

$$
|F|=\frac{\binom{N}{\ell}}{\binom{k}{l}}(1+o(1))
$$

Consider the system $\mathcal{T}=\{V-F ; F \in F\}$. Clearly $\mathcal{T} \subset[V]^{n-k}$ and moreover every $n-\ell$ subset of V contains some element of \mathcal{G}

References

[1] F.Erdos, H.Hanani; On a Limit Theorem in Combinatorial Analysis, Publ.Math. Debrecen 10, (1963) 10-13
[2] P.Erdos, J.Spencer; Probabilistic Methods in Combinatorics, Akadémidi Kiado, Budapest $1 \leq 74$
[3] G.Katona, T.Nemetz, Mi.Simonovits; On a Graph-problem of Turán in Hungarian , Mat. Lapok 15, (1564) 228-230
[4] V.Rodl; On a Yacking and Covering problem, European Journal of Combinatorios to be submitted soon
[5] J.Schönheim, On Waximal Systems of r-Tuples, Studia Sci. Math. Hung. 1, $(1566) 363-360$
[6] P.Tuxan, Reseach Problems, Publ. Math. Inst. Hung. Acad. Sci. 6, (1961) 417-423

Address

Department of wathematics
FJFl ČvUT Husova 5
110 UU Praha 1
Czechoslovakia

