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IREEDUCIBIE IMAGES OF ßN-N 

A.Błaszczyk 

The space ßN-N is the remainder of the бech-Stone compactifica-

tioxi of the natural numbers. A mapping f ;X
 o n t o

 >Y is irreduciЪle 

if it is continuous and f(F) £ ү for every closed set FcX such 

that F ć X. Our aim is to investigate irrєduciЪle images of ßN-N. 
Under the assumption of CH (= the continuum hypothesis) we shall 

show (see Theorem 1) that a zero-dimensional compact space X is an 

irreduciЪle image of ßN-N iff weight of X equals 2 ^ and X has the 

following property 

(P) there are no isolated points in X and non-empty & 's 

±n X have non-єmpty interior. 

Spaces in which non-єmpty Ĝ -'s have non-empty interior are also 

called almost-P spaces or P-spaces. Clearly, ßN-N satisfies condi-

tion (P). If X is a compact zero-dimensional spacє, then ß(X*N) 

-(Xx-N) also satisfies condition (P) ; see e.g. Walker UOl . If X 

and Y satisfy condition (P), then the product X x ү satisfies (P) 

as well. Zero-dimensional compact spaces satisfying condition (P) 

in which єvery two disjoint open F^s have disjoint closures are 

called Ьy several authors Parovičenko spaces. The wєll known theo-

rem of Paroviöenko C93 says that , under CH , a spacє is homeomor-

phic to ßN-N iff it is a Parovičenko space of weight 2 ^ . Concern-

ing Parovicenko spaces Broverman and Weiss Lll have shown that a 

Parovičenko space X has the aЪsolute (= Gleason space) homeomor-

phic to the aЪsolute of ßN-N iff тr-weight of X equals 2^ . If X 

is an irreduciЪle image of ßN-N, then X is co-aЪsolute with ßN-N ; 

i.e, the aЪsolute of X is homeomorphic to the aЪsolute of ßN-N. 

So, our Theorem 1 leads to the following : under CH a compact 

space X is co-aЪsolute with ßN-N iff X is dense in itself and has 

a rr-Ъase of pow r 2*° consisting of non-empty regular-open sets in 

which every countaЪle chain (with respect to inclusion) has a lower 

Ъound (see Theorem З b Tћis improves the result of Бroverman and 

Weiss Ľ11 as well as the result of Williams C113 who proved, under 
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CH , that if X is a compact space of fr-weight 2 W satisfying con­
dition (P) , then X is co-absolute with BN-N. 

All spaces are assumed to be compact (Hausdorff). Zero-dimen­
sional compact spaces are called Stone spaces. The symbol CO(x) 
will denote the Boolean algebra of all closed-open subsets of X. 
If X and Y are Stone spaces/ then every continuous mapping from X 
onto Y is uniquely determined by an embedding of CO(Y) into CO(X). 
For a space X , w(X) denotes weight and TT(X) denotes rr-weight 
of X. 

§1. Irreducible mappings of BN-N. Let us note the following 

Lemma 1. If f is an irreducible mapping from X onto Y and X is 
a (compact) space satisfying condition (P) , then Y satisfies (P) 
as well. 

The proof is clear, so can be omited. 

One can easily chack that if X satisfies condition (P) , then 
in X there exists a disjoint family of open sets of size 2 ^ . In 
particular w(X)>2Gu> . Thus, by Lemma 1, if X is an irreducible 
image of BN-N , then X is a compact space of weight 2C^ satisfying 
condition ^P). To obtain the converse we have to prove two lemmas: 

Lemma 2. If U.j ,U2,W c CO(BN-N)-{0 } are countable and 
(1) for every i* {1,2} , every u.j ,... ,un* U.-̂  and every 

w * W , w- (u.j ̂  ... ̂  un) / 0, 
then there exist z-j ,z2 e. CO(BN-N) such that 

(2) z1^ z2 = 0, 
(3) z.j ̂  u = 0 for every u e. U-j and z2 ̂  u = 0 for every ue(J2, 
(4) z*r\ w £ 0 for i * f 1 ,2} and for every w e W. 

Proof. By condition (1), for i =1,2 and for every weW there 
exists w ^ CO (BN-N)-{0} such that w^cw and w ^ u = 0 for every 
ueU. . Since the family {w^ : weW and i = 1,2} is countable , 
one can assume that it consists of disjoint elements. We set F^ = 
= clU{w^ : w a i , i =1,2. Since disjoint open F̂ 's in BN-N 
have disjoint closures, we get :,F-^ F2 = 0 , F- ̂ cl^U- = 0 and 
F2~ cl^U2 = 0. Then, there exist two disjoint elements z.j,z2 e 
£00(BN-N) such that F.j <- z.j , F2c z2 , z.j ̂  MLj = 0 and z 2~^U 2 = 
= 0. It is easy to see that z.j and z2 are as required. 

The next lemma is well known ; for the proof see e.g. Comfort 
and Negrepontis L2] , page 36. 

Lemma 3. Let A'and B'be subalgebras of Boolean algebras A and B, 
respectively. Let h:A' o n t p VB'be an isomorphism and let a*A and 
b <-B be such that for every x^A' 
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x^a = 0 iff h(x)^ b = 0 and 

x ̂ a = 0 iff h(x) r> b = 0 . 

If A " and B " are algebras generated "by A'^{a^ and B'^ib) , res­

pectively, then there exists an isomorphism g:A" »B" such that 

g|A' = h and g(a) = b. 

Now, we are ready to prove the following 

Theorem 1. Assume CH. A Stone space X is an irreducible image 

of BN-N iff X satisfies condition (P) and w(X) = 2 ^ . 

Proof. Assume X is a Stone space satisfying condition (P) such 

that w(X) = 2 ^ = co.,. To prove the theorem it suffices to show 

that the algebra A = C0(X) can be embedded as a dense subalgebra 

in B = CO (BN-N). Let A = {a^ : «UJ^ } and B = {b^ : * < c^ 1. By 

transfinite recursion we construct for every ax GO. an isomorphism 

h^ :A- KB^ such that 

(5) A^ and B^ are suhalgebras of A and B, respectively, 

(6) if /A<OC , then A^ c A ^ , B^ c B^ and h^| A ^ = h^ , 

(7) {a^: /*.$ <\ c A^ , 

(8) t he re e x i s t s b fc B^ - {0^ such t ha t b c b ^ . 

I f h^ :A^ ^B^ , for -c< cô  , a re a l ready cons t ruc ted , v/e set h = 

= yj ( h ^ : **. < O J - J ) . C lear ly , h i s an embedding of A in to B and 

h(A) i s dense in B. 

Assume, A ̂  , B ̂  and h^ are defined for a l l^<Y". Thus h = 

= O' lh^ : *<&-] is an isomorphism of A'= Lj[A^ : dk<r} onto B ' s O J B ^ : 

c<<ir}. Suppose a ft A' and denote 

X. ={x«cA ' : x n a r = 0 ] , 

X2 = {x & A ' : x c a ^ } , 

Y = { x € = A ' : x ^ a ^ ^ 0 and x-a^. /- 0 \ . 

For x t 7^ a n d y £ X 2 , h(x) r>h(y) = 0. Hence, there exists u 6 B 

such that 

(9) h(x)~u = 0 for all x C.X.. and h(y)cu for all y 6 X 2 . 

Since X-,, X2 and Y are countable, by Lemma 2, there exist z.«,ZpfeB 

such that z^oh(x) = 0 for every x e X. , z2^h(x) = 0 for every 

x & X 2 and z.j o h(x) £ 0 £ z2 o h(x)# for every x e L Now, by (9) , it 

is easy to chack that for v = (uoz-)-22 v/e have the following : 

x r, a r = 0 iff h (x) n v = 0 and 

x - a r = 0 iff h(x)-v = 0. 

So, by Lemma 3, if A " c A is a subalgebra generated by A'^ia^ and 

B " C. B is a subalgebra generated by B'^{VJ , then there exists an 

isomorphism g:A" •B" such that g\ A' = h and g ( a r ) = v. If a^e 

£ A' we set g = h. 

Now, s ince B " i s countable , t he re e x i s t s weB-{0 i such t h a t 
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w cЪ
 r
 and 

(10) for every b € B " , either br\W=0orwc.b. 
Let C = ( u A " : g(x) nw-0} and D = ( x a " : wcgfx)i, Clearly, 

by (10), A"= CwD. Since X satisfies condition (P) and y1 0 ... ̂  

n yk- (x-j ̂  ... vx n) ^ 0 , for every x,. ,... ,xn e C and y-j ,... ,yk e- D , 

there exists zeA-[0) such that 

(11 ) z ̂ x =s 0 for every x e C and z cy for every y e D. 

Let A r c A be the algebra generated by A'\, t z "i and B r c B the alge­
bra generated by B"L/{w} . By condition (11) and Lemma 3, there 

exists an isomorphism h r :Ar *Br such that h^| A " = g and h^.(z) = 

= w. Now, to finish the proof it suffices to see that h r , A^and 

B r satisfies conditions (5) - (8). 

We have already pointed out that (BN-N)x(BN-N) satisfies con­

dition (P). Thus, from Theorem 1 we get 

Corollary 1. Assume CH. There exists an irreducible mapping 

BN-N onto its square. 

However, the following question remains open : 

Question. Is it true (in ZFC) that BN-N can be mapped onto its 

square by a continuous mapping ? 

Let X be a compact space. The Stone space G(X) of the Boolean 

algebra of all regular-open subsets of X is called the absolute 

(= the Gleason space) of X ; see e.g. Comfort and Negrepontis C2], 

page 57. Compact spaces X and Y are co-absolute iff G(X) and G(Y) 

are homeomorphic. The following lemma summarize the informations 

concerning absolutes which will be needed. 

Lemma 4.Let X and Y be compact spaces. The following hold : 

(a) If X has a dense sub space homeomorphic to a dense sub space 

of Y, then X is co-absolute with Y. 

(b) If Y is an irreducible image of X, then Y is co-absolute 

with X. 

In particular, if X is an irreducible image of BN-N, then X'is 

co-absolute with BN-N. The converse implication is not true. 

Example. Let F he a closed but not open Gj-sub set of BN-N and 

let X be the quotient space obtained from BN-N by collapsing F to 

a point. Clearly, in X and in BN-N there exist rr-bases consisting 

of closed-open subsets homeomorphic to BN-N. So, by Lemma 4(a), X 

is co-absolute with BN-N. By Lemma 1, there does not exist irre­

ducible mapping from BN-N onto X. Y/e shall show that also X can­

not be mapped onto BN-N by an irreducible mapping. Indeed, suppose 

f:X ontQ>BN-N is irreducible. Then, for every open set U c X , 

Intf (U) £ ty. There exists a point in X with a countable base of 
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neighbourhoods. Then, there exist two countable families tHn : n < 

< cj } and {Gn : n^co'i of closed-open subsets of BN-N such that 
H n ° G k = ^ f o r n ^ k a n d f o r s o m e x * x > fM e c l U {Hn : n < <^,} ,-. 
^cl^y{G : n<<x?}. We get a contradiction, because disjoint open 

F 's in BN-N have disjoint closures. 
or " 

It is known that CH is equivalent to the statement that all 

ParoviSenko spaces of weight 2°^ are homeomorphic ; see Parovicenko 

[9] , van Douwen and van Mill [41 and Frankiewicz [5] • Broverman 

and Weiss £1"] have shown that CH implies that all Parovicenko 

spaces of TT -weight 2^ are co-absolute and conjectured that the 

converse is also true. Recently van Mill and Williams [81 have 

proved that if 2 U = 2 U < 1, then not all Parovicenko spaces of 

TT-weight 2°^ are co-absolute, whereas Dow [31 has proved that if 

cf(2co ) = oj.. , then all Parovicenko spaces of TT - weight 2 ^ are 

co-absolute (note that cf (2 <° )> co1 whenever 2*° = 2 ° ^ ). But the 

assertion "X is an irreducible image of BN-N" is stronger than 

"X is co-absolute with BN-N" ; see the example above. So, the 

question whether the assertion "every Stone space with the proper­

ty (P) and weight 2*° is an irreducible image of BN-N" is equiva­

lent to CH remains open. We only have the following 

Theorem 2. It is consistent with ZFC that cf(2co) = co 1 < 2 °° 

and not every Stone space with the property (P) is an irreducible 

image of BN-N. 

Proof. Let "f denotes the formula asserting that there exists 

a point p *BN-N with *X(p,BN-N) = o_>.|. It is known that there 
exists a model JL for ZFC such that 

JL \* ? A cf(2°°) = CJ., < 2<° ; 

see Kunen L61 , page 289. On the other hand one can prove (in ZFC) 

that if X = B(co * 2C) - (co * 2 C ) , where 2 C is the Cantor cube of 

weight 2 ^ , then the Tr-character at every point of X equals 2*° ; 

see e.g. van Mill L71 , page 41. Now, suppose f:BN-N *X is ir­

reducible and P is a base of neighbourhoods of the point p, |P| is 

minimal. Then, the family R = (X-f(BN-N-U) : U <b P \ is a rr-base 
at the point f (p). Clearly, 2°kV IRI $ fPI . But in our model JJl , 

IP! = c o . . < 2 G J ; we get a contradiction. 

§2. Co-absolutes of BN-N. In this section we shall give a char­

acterization of all compact spaces which are co-absolute with BN-N. 

Our characterization gives a strenghtening of a result of Williams 

[111 who has proved that under CH every compact space of rr-weight 

2 ^ satisfying condition (P) is co-absolute with BN-N. 
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A family H of non-empty s e t s w i l l be ca l l ed cr-closed i f fo r 
every decreas ing sequence {Un : n<coJcR t h e r e e x i s t s Ue R such 
t h a t UcU , for a l l n<co . 

Lemma 5« A compact space X admits a cr -c losed Tr-base c o n s i s t ­
ing of regular-open s e t s i f f the space G(X) admits a cr-c losed 
Tr -base of the same weight cons i s t i ng of closed-open s e t s . 

Proof. 1 . I f P i s a r j -c losed rr-base of X cons i s t i ng of regu­
la r -open s e t s and G:G(X) >X i s the i r r e d u c i b l e mapping, then 
R = (clG'^U) : UfeP] i s a r r - b a s e in G(X) c o n s i s t i n g of c losed-
-open s e t s . Clear ly , IP \ = I R l . In order to show tha t R i s 
cr-closed i t suf f ices to check only t h a t clG~H(U) c clG~\v) implies 

UcV ( because U and V are r egu l a r -open ) . 
2 . Assume RcCO(G(X)) i s a cr-closed r r -base in G(X). We set 

P = (IntG(w) : W t R ] . Since G i s i r r e d u c i b l e , IntG(w) /- IntG(W') 
whenever W £ W'. So, I R\ = I PI . C lea r ly , for every W e R , IntG(w) 
i s regu la r -open . Hence, i t remains to show tha t P i s cr-c losed. 
To do t h i s i t su f f i ces to show t h a t 

clG"1:intG(W)) = W, 
for every WeCO(G(X)). 

To prove that W c clG^IntGfw)) suppose that there exists a 
closed-open non-empty UcV/ such that U r\ clG~(IntG(w)) = 0* Then 
G(U)rx IntG(W) =0, hence G(U) c cl(X-G(w)) c G(G(X)-W). Thus G(G(X)-
-U) = X ; a contradiction, because G is irreducible. 

To prove that clG"(lntG(W)) cW suppose that there exists a set 
U*=CO(G(X)) such that U A W = 0 and 0 ^ U c clG~^(lntG(w)). Then 
G(U) c G(clG^(IntG(W))) = clIntG(w) cG(W). Again, G(G(X)-U) =X ; 
a contradiction. The proof is complete. 

Clearly, CO(BN-N) is a 6r-closed IT-base of cardinality conti­
nuum. Thus, we get 

Corollary 2. If X is a compact space which is co-absolute with 
BN-N, then X has a G-closed rr-base of cardinality continuuum 
consisting of regular-open sets. 

Lemma 6. Let X be a dense in itself Stone space with a Gr-closed 
7T-base PcC0(X) of cardinality c^ . Then X has an irreducible 
mapping onto a Stone space with the property (P) of weight GO-, . 

Proof. Let P = IU^ : <* < CJ.^ . By transfinite recursion one 
can construct for every * < cj.j a disjoint family T^cP such that 

(12) cl ̂ T a = X, 

(13) for some W e T^ , W c U d , 
(14) for every WfcTa. , U V t T ^ ^ : V d i i = co-, , 

(15) if <*<r and V eT r , then V c W for some W eT^ . 
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The construction is possible because P is a 6-closed jT-base. In 
particular, (14) follows from the fact that for every non-empty 
open set UcX there exists a family of size 2 ° of disjoint open 
sets contained in U. 

Let B cCO(x) be a subalgebra generated by T = O'IJT^ : a < co-j ) 
and let Y be the Stone space of B. By condition (13), B is dense 
in CO(X). Thus, the mapping from X onto Y appointed by the embed­
ding of B into CO(X) is irreducible. It remains to prove that Y 
satisfies condition (P). First observe that, by (15), 

(16) if ̂ < r , U fe T^ and V «- T r , then either V c U or 
U^V = 0. 

This follows that "B" = (U-(W1 ̂ ... v.Wk) : U^T^^iX}, W ^ V v,^}, 
r- <. lTj< COH and i < k < co ̂  is a "base in Y. Let {V : n < cp } be a 
decreasing sequence of elements of B. By the condition (16),,for 
every n <. co there exist u < co.. , U^ & OL and a finite set Rnc 
c B such that V = U4 - WR^ and 

(17) if W *\r- T r , then * n <. r . 
Clearly, we can assume, that U. ^ U«*k whenever k<n, i.e. if k« n, 
then oi, < «< . Let ©c = sup <^_-:n<-co"i.If-* = << for some K. n 11 n 
n < co , then we can assume that <*. = u for all n. Since 1K-J JR : 
: n<coiKco, there exists, by conditions (14) and (17), U^T^-v-

such that UcU^ and Ur\W = 0 for all W e= ^ { \ : n<co) . Hence 

U c r\ IV : n < co}. So, we can assume that <* < oL for all n <* co . 

Recall, P is C-closed. Then, by the condition (12), there exists 

U^-T^ such that UcU^ n , for all n. Set R = L^{Rn : n<co}. We 

claim that 

(18) if W eR, then either W cU or W^U = 0. 
Indeed, if W ^T^ and &*><*, we apply (16). If .r<*and W*T ^Rk> 

then <r<<>*n < °̂  for some n such that k<n<co . The inclusion U^ c. 

cw is imposible because VncUe(n , V ncV k and V^oW = 0. Thus , 

Uoc o W = 0f which follows UoW = 0. Now, by conditions (14) and 
(18), there exists U' ̂  T^+1 such that U'c U and U'o W = 0, for all 
W £ R. Therefore, U'c fMV s n < co j , which completes the proof. 

Theorem 3. Assume CH. A compact space X is co-absolute with 

BN-N iff X is dense in itself and admits a cr-closed Tr-base of 
power continuum consisting of regular-open sets. 

Proof. By Lemma 5, X is co-absolute with a Stone space of 

weight <-o- which admits a (T-closed Tr-base consisting of closed-

-open sets. Thus, by Lemma 6, X is co-absolute with a Stone space 

of weight co. with the property (P). By Lemma 4(b) and Theorem 1, 

X is co-absolute with BN-N. Corollary 2 completes the proof. 
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