USA 11

Roman Frič; Peter Vojtáš

Convergent sequences in βX

In: Zdeněk Frolík (ed.): Proceedings of the 11th Winter School on Abstract Analysis. Circolo Matematico di Palermo, Palermo, 1984. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplements No. 3. pp. [133]--137.

Persistent URL: http://dml.cz/dmlcz/701300

Terms of use:

© Circolo Matematico di Palermo, 1984
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

CONVERGENT SEQUENCES IN βX

Roman Frit and Peter Vojtás

Abstract

ABSTRAGT. Our aim is to construct a completely regular Hausdorff topological space X in which no nontrivial sequence converges and in its Cech-Stone compactifioation βX there is a nontrivial convergent sequence. We show that all three possibilities occur: (IN-OUT) the sequence is in X and its limit point is in $\beta X-X$, (OUT-IN) the sequence is in $\beta X-X$ and its limit point is in X and, finally, (OUT-OUT) both the sequence and its limit point are in $\beta X-X$. We discuss the minimal cardinality of the spaces in question.

Let X be a completely regular Hausdorff space and let $C^{*}(x)$ be the set of all bounded oontimuous functions on X. Then a sequence $\left\langle x_{n}\right\rangle$ converges in X to a point $x \in X$ if for each $f \in C^{*}(X)$ we have $\lim f\left(x_{n}\right)=f(x)$. A sequence $\left\langle x_{n}\right\rangle$ is said to be fundamental whenever $\left\langle f\left(x_{n}\right)\right\rangle$ is a convergent sequence for all $f \in C^{*}(X)$. Clearly, a fundamental sequence $\left\langle x_{n}\right\rangle$ either converges in x or $\bigcup_{m \in \omega}\left\{x_{n}\right\}$ is a closed discrete subset of x. If each fundamental sequence converges in X, then X is said to be sequentially complete. Realoompaot and normal spaces are sequentially complete ([3]).
Proposition 1. If $|x|=\omega$, then there is no convergent sequence in βx of the types IN-OUT or OUT-OUT. PROOF. If $|X|=\omega$, then X is normal and hence sequentially complete. Thus no sequence $\left\langle x_{n}\right\rangle$ of points $x_{n} \in X$ can converge to a point $x \in \beta X-X$. Similarly, if $\left\langle x_{n}\right\rangle$ is a one-to-one sequenoe of points $x_{n} \in \beta X-X$, then $Y=X U\left\{x \in \beta X_{;} x=x_{n}, n \in \omega\right\}$ is also a sequentially complete apace. Thus $\left\langle x_{n}\right\rangle$ cannot converge in $\beta Y=\beta x$ to a point $x \in \beta Y-Y$. Consequently, the sequence $\left\langle x_{n}\right\rangle$ cannot converge in βX to a point $x \in \beta X-X$.

1. TIN-OUT

Our construction of a space X in which there is a sequence $\left\langle x_{n}\right\rangle$ converging in βx to a point in $\beta x-X$ and in x no nontrivial sequence converges is based on the following idea.

Flrst, let $\alpha>\omega$ be a cardinal number and let $Y=\omega \times(\alpha+1)$. Define a topology for Y : all points $[n, \beta]$ for $n \in \omega$ and $\beta \in \alpha$ are isolated; a local base at $[n, \alpha]$ for $n \in \omega$ is formed by sets $\{[n, \alpha]\} \cup\left(K_{n}-s\right)$, where $K_{n}=\{[n, \beta] \in Y ; \beta \in \alpha\}$ and s is a oountable subset of K_{n}. Then Y is a completely regular Hausdorff space and for eaoh $f \in C^{*}(Y)$ we have $f([n, \alpha])=f([n, \beta])$ for all but countably many $\beta \in \alpha$. Note that no nontrivial sequence converges in Y.

Second, embed Y into a completely regular Hausdorff space X so that no nontrivial sequence converges in X, the sequence $\langle[n, \alpha]\rangle$ is a fundamental sequence in X, and the set $\left\{[n, \alpha] \in X_{j}\right.$ $n \in \omega\}$ is a closed discrete subset of X. Then $\langle[n, \alpha]\rangle$ is an IN-OUT sequence.

At the Winter School we have presented the following space \mathbf{X}, communioated to us by P. Simon.
Example 1. Consider the set $X=\left((\omega+1) \times\left(2^{0}+1\right)\right)-\left\{\left[\omega, 2^{0}\right]\right\}$. Define a topology for x :
(i) All points $[n, \beta]$ for $n \in \omega$ and $\beta \in 2^{\circ}$ are isolated;
(ii) For $n \in \omega$ a local base at $\left[n, 2^{\circ}\right]$ is formed by sets $\left\{[n, \beta] \in x_{i} \beta \in 2^{\circ}+1\right\}-s$, where s is a countable subset of the set $\left\{[n, \beta] \in x_{;} \beta \in 2^{\circ}\right\}$;
(iii) Let h be a one-to-one mapping of 2^{0} onto $\left\{U \in P\left(\omega^{*}\right)\right.$; $|u|=2\}\left(\right.$ for $\beta \in 2^{\circ}, \mathbf{h}(\beta)=\left\{\sigma_{1} g\right\}$, where $F_{\text {and }} g$ are distinot uniform ultrafilters on ω). For $\beta \in 2^{0},\{F, g\}=h(\beta), F \in F$ and $G \in g$, the sets $\{[\omega, \beta]\} \cup\left\{[n, \beta] \in x_{;} n \in F \cup G\right\}$ form a local base at $[\omega, \beta]$.

It follows from the construction that X is a oompletely regular Hausdorff space in whioh no nontrivial sequenoe converges. Clearly, Y (with $\alpha=2^{\circ}$) is a subspace of X. Further, $\left\langle\left[n, 2^{\circ}\right]\right\rangle$ is a fundamental sequence in X and $\left\{\left[n, 2^{\circ}\right] \in X_{;} n \in \omega\right\}$ is a olosed disorete subset of X. Consequently, the sequence $\left\langle\left[n, 2^{\circ}\right]\right\rangle$ oonverges in βx to a point in $\beta x-X$.

Here we present another construotion of the space X (with no nontrivial comvergent sequences) in whioh Y (with $\alpha=K$) is embedded.
Example 2. In [1] it is shown that for
$K=\min \left\{\delta_{;}\right.$the Boolean alsebra $P(\omega) /$ in is not $\left(\delta_{; ~}^{\prime}, 2\right)$ distributive $\}$ there is a matrix $\left\{p_{\alpha} ; \alpha \in \mathbb{C}\right\}$ suoh that the following conditions hold:
(1) P_{α} is a marimal almost disjoint family of subsets of $\boldsymbol{\omega}$;
(2) $\alpha<\beta$ implies P_{β} refines P_{α};
(3) for each infinite subset x of ω there is $\alpha \in \mathcal{K}_{\text {suoh }}$ that $\left|\left\{y \in P_{\alpha} ; y \subseteq x\right\}\right|=0$.
For eaoh $\alpha \in K$ define

$$
\mathscr{F}_{\alpha}=\left\{x \subseteq \omega ;\left|\left\{y \in P_{\alpha} ;|y-x|=\chi_{0}^{\lambda}\right\}\right|<\lambda_{0}^{\lambda}\right\} .
$$

Clearly, \mathcal{F}_{α} is a filter on ω. Consider the set $x=((\omega+1) \times$ $x(k+1))-\{[\omega, k]\}$. The topology for x is defined analogously as in Example 1: (i) and (ii) remain and (iii) is replaced by
(iii) for $\beta \in K, F \in \mathcal{F}_{\beta}$ the sets $\{[\omega, \beta]\} \cup\{[n, \beta] ; n \in F\}$ form a local base at $[\omega, \beta]$.

Recall that $\omega_{1} \leqslant K \leqslant 0<2^{\circ}$, and so the cardinality of this space is $K<2^{\circ}$.

At the Winter Sohool we have asked what is the minimal oardinality of the space X in whith no nontrivial sequence oonverges and in X there is an IN-OUT sequence. In [4] it is shown that the minimal cardinality of such a space is ω_{1}. The oonstruction is of the same type as in the above two examples. In the construction $\alpha=\omega_{1}$ and x is the set $\left((\omega+1) \times\left(\omega_{1}+1\right)\right)-\left\{\left[\omega, \omega_{1}\right]\right\}$ equipped with a topology in whioh neighborhoods of $[\omega, \beta], \beta \in \omega_{1}$ are construoted via sums of Frbohet filters.
2. OUT-IN

Example 3. Consider the set $X=(\omega \times \omega) \cup\{\infty\}$ equipped with the following topology: all points $[n, m] \in \omega \times \omega$ are isolated; a looal base at ∞ is formed by sets $\{\rho\} \cup\left(\left\{[m, n] \in \omega \times \omega ; m>m_{0}, n>n_{0}\right\}-S\right)$, where $m_{0}, n_{0} \in \omega$ and S is a subset of $\omega \times \omega$ containing finitely many points in each row and finitely many points in each colum of $\omega \times \omega$. Then x is a countable oompletely regular Hausdorff space in which no nontrivial sequence oonverges. For sach new $\beta \omega$ is homsomorphic to the closure in βx of the disorete olosed set $K_{n}=\{n\} \times \omega$, the homeomorphism being fixed on ω. It is easy to see that if $X_{n} \in{ }^{01} \mathcal{B X} K_{n}-K_{n}$, then the sequence $\left\langle x_{n}\right\rangle$ oonverges in βX to the point ∞. Since X is countable, it follows from Proposition 1 that there are no (nontrivial) INwOUT or OUT-OUT sequences in βX.
3. OUT-OUT

In our talk at the Winter School we have presented a space (having no nontrivial convergent sequences) for which there are both IN-OUT and OUT-OUT sequences. The space itself has been oonstructed by tying together a sequence of distinot ooples of the space X from Example 1. We have also announced that we are able to construct a space (having cardinality c) for whioh there are only OUT-OUT sequences. We present the construction below (Example 4). After the Winter School, during a short Visit of W. S. Watson in Košice, we have constructed several spaces (with no nontrivial convergent sequences) having cardinality ω_{1} for whioh there are only OUT-OUT sequences. This, together with Proposition 1, shows that ω_{1} is the minimal oardinality of such spaces. For details see [4].
Example 4. In this construction we use the following observation about ω^{*}. It is known ([2]) that each point of ω^{*} is a o-point (e.g. ekvivalently, for each nontrivial ultrafilter $j=\left\{x_{\alpha} ; \alpha \in 0\right\}$ on ω there is an almost disjoint refinement (i.e. a system $\left\{y_{\alpha} ; \alpha \mid \in 0\right\}$ such that $y_{\alpha} \subseteq x_{\alpha}$ and $\alpha \neq \beta$ implies $\left.\left|y_{\alpha} \cap y_{\beta}\right|<x_{0}^{\alpha}\right)$). A nontrivial ultrafilter j on ω is said to be a $G_{-o-p o i n t ~ i f ~}^{\text {in }}$ the following holds: Let $\left\{x_{\alpha} ; \alpha \in c\right\}=[j]^{\omega}$ be an enmeration of all countable subsets of j. Then there is an almost disjoint family $\left\{y_{\alpha} ; \alpha \in 0\right\}$ on ω such that for each $\alpha \in 0$ and each $x \in X_{\alpha}$ we have $y_{\alpha} S^{*} x$ (modulo finite). Using a silght modifioation of Hindman's proof (see [5]) of the existence of o-points we can prove the existence of a σ-c-point. Proposition 2. There are always σ-c-points in ω^{*}; assuming CH or MA or RP (Roitman principle), all points of ω^{*} are σ-o-points.

We do not know whether in ZFC each point of ω^{*} is a G-o-point.
 For $\alpha \in 0$, emmerate $x_{\alpha}=\left\{x_{n}^{\alpha} ; n \in \omega\right\}$ and take the product $R_{\alpha}=\prod_{n \in \omega}\left(x_{n}^{\alpha} \cap y_{\alpha}\right)$. Then R_{α} is isomorphic to ω_{ω}. As R (from Example 2) is less or equal to the smallest size of an unbounded family in ${ }^{\omega} \omega$, ordered modulo finite (see [1]), there is a strict$1 y$ increasing sequence of one-to-one functions $\left\{f_{\beta}^{\alpha} ; \beta<\kappa\right\} \subseteq R_{\alpha}$. Clearly, for $[\alpha, \beta] \neq[\gamma, \delta]$ we have $\left|f_{\beta}^{\alpha} \cap f_{\delta}^{\gamma}\right|<\lambda_{0}^{\gamma}$.

Consider the set $X=\omega \times \omega U_{0}$. Define a topology for X : (i) All points $[n, m]$ for $n, m \in \omega$ are isolated;
(ii) Let h be a one-to-one mapping from o onto $o \times R$ and let α, β, γ be suoh that $h(\gamma)=[\alpha, \beta]$. For $F \in F_{\beta}$ (the very
filter from Example 2) the sets\{ $\} \cup\left\{\left[n, f_{\beta}^{\alpha}(n)\right] ; n \in F\right\}$ form a local base at the point γ.

Then the closure of the set $V_{n}=\{[n, m] ; m \in \omega\}$ in βx contains j_{n}, the copy of the σ-c-point j. Then $\left\langle j_{n}\right\rangle$ is a fundamental sequence and βX is a "pure OUT-OUT" space.

REFERENCES
[1] balcar bo, pelant J., simon P. "The space of ultrafilters on N covered by nowhere dense sets", Fund. Math. 110(1980), 11-24.
[2] BALCAR B., VOJTAS P. "Almost disjoint refinement of families of subsets of N^{n}, Proo. Amer. Math. Soc. 79(1980), 465-470.
[3] FRIC R., KOUTNfK V. "Sequentially complete spaces", Czeoh. Math. J. 29(1979), 287-297.
[4] FRIC R., VOJTES P., WATSON W. S. "Convergent sequences in the Ceoh-Stone compaotification", to appear.
[5] HINDMAN N. B. "On the existence of o-point in $\beta \mathrm{N}-\mathrm{N}^{\prime}$, Proc. Amer. Math. Soc. 21(1969), 277-280.

Mathematical institute of the slovak academy of sciences KARPATSK§ 5, 04001 KOŠICE
CZECHOSLOVAKIA

