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CONV.ERGENT SEQUENCES XN ß>X 

Roman Frið and P t r Vojtáš 

.ABSTRACT. Our aim is to oonstruot a completely regular Hausdorff 

topological spaoe X in which no nontrivial sequence oonverges 

and in its &eoh-Stone oompaotifioation fcx there is a nontrivial 

oonvergent sequence* Ve show that all three possibilities occur: 

(IN-OUT) the sequence is in X and its limit point is in £>X-X, 

(OUT-IN) the sequence is in &X-X and its limit point is in X 

and, finally, (OUT-OUT) both the sequence and its limit point are 

in [iX-X. Ve discuss the minimal cardinality of the spaces in 

question. 

Let X be a completely regular Hausdorff spaoe and let 

C (X) be the set of all bounded continuous functions on X • Then 

a sequence ^x,^ oonverges in X to a point x £ X iff for each 

f eC*(X) we have 11m f(xn) s= f(x) . A sequence ^ x ^ is said to 

be fundamental, whenever <f(x ) ^ is a oonvergent sequence for all 

f €C*(x) « Clearly, a fundamental sequence ^ x
n ^ either converges 

i n X or ^J J x \ i s a c losed d i scre te subset of X • I f eaoh flnfccoc nJ 

fundamental sequenoe oonverges in X , then X is said to be 

sequentially complete, Realcompaot and normal spaces are sequen­

tially complete (C3])# 

Proposition 1# If | X I = Co f then there is no oonvergent sequenoe 

in (?>X of the types IN-OUT or OUT-OUT. 

PROOF. If I X I = Co , then X is normal and hence sequentially 

complete* Thus no sequenoe <^xn> of points
 x

n £ X can converge 

to a point x £ &X-X • Similarly, if ^xn"> is a one-to-one sequen­

ce of points x^eftx-X , then Y s XUfcejbXj x s xn, nfcoJ^f is 

also a sequentially complete spaoe* Thus <CxnV oannot oonverge in 

&Y S 6 X to a point x £ f>Y-Y # Consequently, the sequenoe ^ x ^ 

cannot oonverge in (!)X to a point xgftx-X # 
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1* IK-OUT 

Our construction of a space X in which there is a sequence 

^xn^ converging in &X to a point in &X-X and in X no non-

trivial sequenoe converges is based on the following idea* 

First, let o/>cobe a cardinal number and let Y s Cjx( o{ + 1)# 

Define a topology for Y : all points [nf&3 for n£c*> and fteo( 

are Isolated; a local base at Ln,cQ for n £ to is formed by sets 

{[nf>(3} U(K n- S)f where Kn = {&!,£] 6Y; {.} e<*} and S is a count­

able subset of K • Then Y is a completely regular Hausdorff 

space and for eaoh f €C (Y) we have f(CxifoG ) -=- f([nf&3 ) for 

all but oountably many &€rc(. 0 Note that no nontrivial sequenoe 

converges in Y • 

Second, embed Y into a completely regular Hausdorff space 

X so that no nontrivial sequenoe converges in X , the sequenoe 

\[nfc(>3/ is a fundamental sequence in X , and the set {£n,oV] €X| 
n €: cj} is a closed discrete subset of X • Then \Cn, ^\y is an 

IN-OUT sequence* 

At the Winter School we have presented the following space X , 

communicated to us by P* Simon* 

Example 1, Consider the set X = ((co+1 )x (2°+1)) -{[cJf2°J} * De­

fine a topology for X : 

(i) All points [nf £>3 f°* nGco and ft € 2° are isolated; 

(ii) For n£co a local base at [n,2°j is formed by sets 

Hnf(2>3 € Xf fa€Z°+l} - Sf where S is a countable subset of She 

set {[nf(5>l€ X|f>€2°} | 

(iii) Let h be a one-to-one mapping of 2° onto {*U € (?(co ); 
l̂-l a &} (for f>62°, h(ft) s {°f^} , where ¥ and $ are distinct 

uniform ultrafliters on co )* For #€-2°f V*\<£\ -=- h(fi)f F Gr -F and 

G € $ , the sets {Ccaf|S'fftU{riif(i] € X; n€FUG^ form a looal base 

at Ccj,(!)3., 
It follows from the construction that X is a completely 

regular Hausdorff space in which no nontrivial sequenoe eonverges* 

Clearly, Y (with o( = 2°) is a subspaoe of X * Further, (D*#2°3^ 

is a fundamental sequenoe in X and {[n,20] £.Xj n €.<*->J Is a closed 
discrete subset of X * Consequently, the sequenoe ̂ [n*2°3/con­

verges in (!)X to a point in ftX-X * 

Here we present another construction of the spaoe X (with 

no nontrivial convergent sequences) in which Y (with JL* K) is 
embedded* 

Example 2* In CO it is shown that for 
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Xa min fcTj the Boolean algebra <?(c*>)/fin is not (cTt.tZ) distri­

butive} there is a matrix {p^f o£ €r>c][ such that the folloving 

oonditlons hold: 

(1) P̂ L is a maximal almost disjoint family of subsets of CJ; 

(2) otcjSimplies P/j refines P^ j 

(3) for each infinite subset x of CJ there is ot&fsuoh that 

UyGP^i y S x i U o . 
For eaoh d€K define 

%. - |*£a>. l * y & P , ( . , . y - x l s * 0 i . < l \ } . 
Clearlyf > ; li a filter onCJ • Consider the set X = ((w+l)* 

>[(>1+1)) - it<«-»|fcl"$ # The topology for X is defined analogously 

as in Example 1: (l) and (ii) remain and (ill) is replaoed by 

(iii)' for(ieKf F 6 ^ the setsfrc^pHUftn,^! ; n6F> 
form a local base at t^ift], 

Reoall that ca £ £ £ © <2° f and so the cardinality of this 

spaoe is VC < 2 * 

At the Winter Sohool ve have asked vhat is the minimal cardi­

nality of the spaoe X in vhioh no nontrivial sequenoe oonverges 

and in X there is an IN-OOT sequence* In [43 it is shovn that 

the minimal cardinality of such a spaoe is GO.. The eons true tion 

is of the same type as in the above tvo examples* In the construc­

tion oL= cot and X is the set ((co+1) X ( o^-M)) - {Cc-->, cc^]} 

equipped vith a topology in vhioh neighborhoods of [co,(ilt (̂ €-̂  

are constructed via sums of Freohet filters* 

Z. OOT-IN 

Example 3. Consider the set X s (COXOJ ) U {o*\ equipped vith the 

folloving topology: all points Cnfm3eco*co are isolated*; a local 

base at 00 is formed by metm^po]u(\£mtn\ GCJXCU ;m >m f n > n \ -S) f 

where m fn oeco and S is a subset of U>XUJ containing finitely 

many points in each rov and finitely many points in eaoh column 

of cox to # Then X is a countable completely regular Hausdorff 

spaoe in vhioh no nontrivial sequenoe converges* For eaoh n£u_> 

ft co is homeomorphic to the closure in &X of the discrete closed 

set K B {n J X co f the homeomorphism being fixed on u> * It is 

easy to see that if x 6 o L x K - K n f then the sequenoe ^x^? 

oonverges in &X to the point 00 , Sinoe X is countable f it 

follovs from Proposition 1 that there are no (nontrivial) IN-OOT 

or OUT-OOT sequences in fix * 
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3 # OTT-OOT 

In our talk at the Winter School we have presented a spaoe 

(having no nontrivial convergent sequences) for which there are 

both XN-OUT and OUT-OUT sequences. The spaoe itself has been oon-

struoted by tying together a sequence of distinct copies of the 

spaoe X from Example 1. ¥e have also announced that we are able 

to construct a spaoe (having cardinality c) for which there are 

only OUT-OUT sequences* Ve present the construction below (Example 

4). After the Winter School, during a short visit of V* S* Watson 

in KoSice, we have constructed several spaces (with no nontrivial 

convergent sequences) having cardinality GJ* for whioh there are 
only OUT-OUT sequences* This, together with Proposition 1, shows 

that cj is the minimal cardinality of such spaces. For details 

see Lkl. 

Example 4* In this construction we use the following observation 

about CO*. It is known ( D-0) that each point of CO is a o-polnt 

(e*g* ekvivalently, for each nontrivial ultrafliter j =fxj$oteo J 

on co there is an almost disjoint refinement (i*e. a system 

iy^ldjGoT such that y^ Q x^ and o(^ (J> implies l^n y^ I ̂ 3^))« 

A nontrivial ultrafilter J on CJ is said to be a g-o-polnt if 

the following holds: Let {x^j et 6 olr s D 3 be an enumeration 

of all oountable subsets of j • Then there is an almost disjoint 

family {y. | cL G o} on w such that for each <A 6 o and eaoh 

xGX^ we have y^ ̂  x (modulo finite)* Using a slight modifi­

cation of Hindman's proof (see Csl) of the existence of o-points 

we can prove the existence of a ^-o-point* 

Proposition 2* There are always o -c-points in to | assuming CH 

or MA or RP (Roitman principle), all points of to* are 6~-o-points* 
Ve do not know whether in "ZlfC each point of co*is a £*-o-point. 

Construction* Let j be a £*-o-point and let Xjf3k b e a s above* 

For ole o , enumerate X^ -= $x*Sn€-o>j and take the product 
R«/. s'*2u>(xn ^ ytl ) # <Kien Ro( l s isomorphic to wco* As *C (from 
Example 2) is less or equal to the smallest size of an unbounded 
family l n w w , ordered modulo finite (see Ell), there is a strict­
ly increasing sequence of one-to-one functions {f*f fi> < ̂ 1 ~ R^ • 
Clearly, for to^l/* Cy,<T] we have 11£ n f JT 1 < &0 . 

Consider the set Xs<ox.coUo* Define a topology for X :. 
(l) All points Cn,n.C] for n,m£-co are isolated.? 

(ii) Let h be a one-to-one mapping from o onto ox K and 
let *«.,(?>,Y be suoh that h( tf-) s &\$>1 • F o r Fe^(the very 
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filt r froш Example 2) th s tsřjfju {Dif fť(n)]; nÇP}foгm a local 

Ъas at the point -f
 # 

Then the closur of the set V = f£nfш $ Ш6OJ}ІП/ІX oontains 

j , the oopy of the б^-o-point j
 #
 Th n ^ j _ ^ iв a fundam ntal 

sequenoe and 6X is a "pure OUT-OUT" spao * 
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