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CONVERGENT SEQUENCES IN (5x

Roman Frid and Peter Vojtds

ABSTRACT, Our aim is to oconstruct a completely regular Hausdorff
topological space X in which no nontrivial sequence converges
and in its Sech-Stone compactification {Bx there is a nontrivial
convergent sequence, We show that all three possibilities occur:

(IN-OUT) the sequence is in X and its limit point is in px-x,
(OUT-IN) the sequence is in g,x-x and its limit point is in X

and, finally, (OUT-OUT) both the sequence and its limit point are
in (Lx-x. We discuss the minimal cardinality of the spaces in
question,

Let X be a completely regular Hausdorff space and let
c*(X) be the set of all bounded oontimuous funotions on X . Then
a sequence < ) converges in X to a point xg&X i1iff for each
rec¥(X) we have 1im f(x ) = £(x) . A sequence <x ) is said to
be fundamentfal whenever <f(x )> is a convergent sequence for all
rec* (X) . Clearly, a fundamental sequence <x Y either converges
in X or MLer{x ‘] is a oclosed discrete subset of X . If each
fundamental sequence converges in X , then X is said to be
sequentially complete. Realcompact and normal spaces are sequen-
tially complete ([3]).
Proposition 1. If lx| =W , then there is no convergent sequence
in (Bx of the types IN-OUT or OUT-OUT,
PROOF, If Ix| =W, then X is normal and hence sequentially
complete, Thus no sequence <xn> of points xnex can converge
to a point x € ‘SX—I e Similarly, if <x n> is a one-to-one sequen-
ce of points xne(bx-x , then Y = xU{xer; X=X, new‘j is
also a sequentially complete space, Thus (xn> cannot converge in
(51‘ = Px to a point x € FY-Y . Consequently, the sequence <xn>
cannot converge in (51 to a point xe(’:x-x o
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1. IN-OUT

Our construction of a space X in which there is a sequence
<xn> converging in (5x to a point in @x—x and in X no non-
trivial sequence converges is based on the following idea.

First, let o>wbe a cardinal number and let Y =wX( o+ 1),
Define a topology for Y : all points [n,(&] for nEw and bed
are isolated; a local base at [n,oﬂ for n €w is formed by sets
{[n,i]} U (K - S), where K =f[n,{?>] eY;{Bed} and S is a count-
able subset of Kn . Thei Y 4is a completely regular Hausdorff
space and for each £ E€C (Y) we have f([m,ol]) = £([n, (5] ) for
all but countably many (Seol « Note that no nontrivial sequence
converges in Y ,

Second, embed Y into a completely regular Hausdorff space
X so that no nontrivial sequence converges in X , the sequenoce
<[n,d:|> is a fundamental sequence in X , and the set {I:n,ol] €X;
n€wl} 1s a closed discrete subset of X . Then <En, d]) is an
IN-OUT sequence,

At the Winter School we have presented the following space X ,
commnicated to us by P, Simon.

Example 1. Consider the set X = ((w+1) % (2%1)) -{[u,a°]} o De-
fine a topology for X :

(1) A1l points [n, f:,] for n€w and Ssez° are isolated;

(11) For ncw a local base at [n,2°] is formed by sets
{[n,(!)] € X; (56 z°+1’1 - S, where S is a countable subset of the
set {In,pl € x;pe 2°}

(111) Let h be a one-to-one mapping of 2° onto{Ue§( w¥*);
= 2% (gor f;ez°, h((B) = {’5.9} , where 7 and are distinot
uniform ultrafilters on w ). For (3€2°%, {%.97 = n(p), Fe ¥ and
G € g , the sets {[(A&(&]}U{[n,(ﬁ] € X; neFUGY form a local base
at [w, ‘5] o

It follows from the construction that X is a completely
regular Hausdorff space in which no nontrivial sequence converges.
Clearly, Y (with o = 2°) 4s a subspace of X . Further,{[n,2°])
is a fundamental sequence in X and {[n,z°] €X; new} is a olosed
disorete subset of X , Consequently, the sequence [n,2°])con-
verges in (bx to a point in @x—x .

Here we present another construotion of the space X (w:l.th
no nontrivial convergent sequences) in which Y (with ol= K) is
embedded.,

Example 2. In [1] it is shown that for
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Rz min {f; the Boolean algebra ((w )/fin is not (J}.,2) distri-
butive}! there is a matrix {P a1 od &X} such that the following
conditions hold:

(1) P, is a maximal almost disjoint family of subsets of w;

(2) el<(5:l.mp1:l.ea P‘s refines P, ;

(3) for each infinite subset x of w there is o€ such that

liver; vy <x¥l= o.
For each d €K define
35 = {xSw; Hyel’,\;,y—:d:??‘o}l <X, }.
Clearly, 3& is a filter on W ., Consider the set X = ((ew+1)X
(X +1)) - }lw,k]} . The topology for X is defined analogously
as in Example 1: (1) and (ii) remain and (iii) is replaced by

(114)° for (3eX, F € Fp the sota{[a:\(s]}U{[n,(}] ; neF}
form a local base at Lw,3],

Recall that &)15'(: £0<2%, and so the cardinality of this
space 1s Y < 2° ,

At the Winter School we have asked what is the minimal cardi-
nality of the space X in which no nontrivial sequence converges
and in X there is an IN-OUT sequence, In L_h] it is shown that
the minimal cardinality of such a space is w,. The eonstruction
is of the same type as in the above two examples., In the construc-
tion d= W, and X 1is the set ((w+1)%(w,41)) - {[w, o1}
equipped with a topology in which neighborhoods of [w,[&], (56-6)‘
are construoted via sums of Fréchet filters,

2, OUT-IN

Exemple 3. Consider the set X = (wxw ) U 10°] equipped with the
following topology: all points [n,m]ewxw are isolated; a local
base at o0 is formed by sets{olU ({[m,n] cwxw jm >m ,n>n } -s),
where m,n,€w and S is a subset of wxw containing finitely
many points in each row and finitely many points in each columm
of Wxw , Then X is a countable completely regular Hausdorff
space in which no nontrivial sequence converges, For each new
(5&) is homeomorphioc to the closure in (5! of the discrete closed
set Kn = {n}x w , the homeomorphism being fixed on w , It is
easy to see that if xneo X Kn- n ! then the sequence <xn>
oconverges in (BX to the point ¢0 , Since X is countable, it
follows from Proposition 1 that there are no (montrivial) IN-OUT
or OUT-0UT sequences :l.nPX .
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3. OUT-OUT

In our talk at the Winter School we have presented a spece
(having no nontrivial convergent sequences) for which there are
both IN-OUT and OUT-OUT sequences., The space itself has been con-
structed by tying together a sequence of distinot copies of the
space X from Example 1. We have also announced that we are able
to construct a space (having cardinality c) for which there are
only OUT-OUT sequences. We present the comstruotion below (Example
4). After the Winter School, during a short visit of W, S, Watson
in Ko3ice, we have constructed several spaces (with no nontrivial
convergent sequences) having cardinality w1 for which there are
only OUT-0UT sequences, This, together with Proposition 1, shows
that 6)1 is the minimal ocardinality of such spaces, For details
see [1],

Example 4, In this construotion we use the following observation
about w* . It is known ([2]) that each point of ¢wW* is a o-point
(e.g. ekvivalently, for each nontrivial ultrafilter J ={xd;oleo‘;
on W there is an almost disjoint refinement (:I..e. a system
{y*;aqeo} such that y, € x; and A# 5 implies lydn ypl <2)).
A nontrivial ultrafilter J on W is said to be a §-o-point if
the following holds: Let {XJ_; decl = [:]]w be an emumeration
of all countable subsets of Jj . Then there is an almost disjoint
family {yJ;eL € o} on w such that for each X € 0 and each
x€X, we have y, S¥x (modulo finite). Using a slight modifi-
cation of Hindman’s proof (see [5]) of the existence of o-points
we can prove the existence of a 6 -c-point,

Proposition 2, There are always 6 «c=points in w*; assuming CH
or MA or RP (Roitman pr:l.no:l.p].e), all points of w¥ are 6-o-points.

¥We do not know whether in ZFC each point of w*is a & -c=point,

Construction, Let J be a 9-o-point and let X,,y, be as above,
For o € o A emumerate = {x* Sin €w] and take the product

R, =mew(x Ny ). Then R_( is isomorphic to “yy, As { (from
Example 2) is 1ess or equal to the smallest size of an unbounded
family in ww, ordered modulo finite (see fi]), there is a strict-
ly increasing sequence of one-to-one functions {fd; (%< X} ¢ R, .
Clearly, for [d,p]# ¥ '] we nave Ir nell « 2.

Consider the set X = wxw Ugo , Define a topology for X :

(1) A11 points [n,m] for n,mew are isolated;

(i1) Let h be a one-to-one mapping from o onto ox R and
let qL,(S,‘{ be such that h(y-) = [d.(s-_l « For Fe 7p(the very
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filter from Example 2) the seta{«g}u{fp,f;(n)]; ncF} form a local
base at the point o .

Then the closure of the set V =f[n,m']; meu;jin@x contains
Jn' the copy of the 6-c-point j . Then <Jn> is a fundamental
sequence and PX is a "pure OUT-OUT" space.
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