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ON CENTERS AND STATE SPACES OF LOGICS 

Pavel Pták 

-52*£2£i* L e t C ( L ) ( re sP* ^ ( L ) ) denote the center (resp. 
the state space ) of a quantum logic L • Given two quantum lo­
gics P , Q , we consider the possibility of constructing a logit L 
with C(L)= C(P) and :/(L)= .f(Q) . We succeed if tf(Q) is com­
pact or if C(P) is of special type • 

!• iD^roduction_• *n the logico-algebraic approech to the fou­

ndations of quantum physics , we identify the event structure of 

a quantum system with a. <T-ortho modular partially ordered set L 

( called a logic ) • The set of states is then represented by the 

set $ (L) of all (T-additive (probability) measures on L ( see 

e.g. [3] , [l] ) • The events of the system which are "absolutely 

comparable*' correspond to the center C(L) of L .As known, C(L) 

is a (T-Boolean subalgebra of L • 

Suppose that we look for a system with a given interplay of 

the center and the set of states • Expressed in the mathematical 

language , we ask if for given two logics P, Q there exists a lo­

gic L such that C(L) is (T-Boolean izomorphic to C(P) and 

f (L) is affinely homeomorphic to ^(Q) • We construct such e lo­

gic L if C(P) is a ^-Boolean algebra of subsets of a set and 

^(Q) is compact ( when understood as a subset of the topological 

linear space R ) . If ^(Q) is not compact we have been able to 

answer the question only for special types of C(P) • 

2# S2ii2D.§-5Df3-r-?2yli-?--# **et u s firs"t recall basic definitions, 

?.§.?I.3ii.i2D-l-i A logic is a set L endowed with a partial ordering 

- and a unary operation such that 

(i) 0,1 C L '( L possesses a least and a greatest element ), 
(ii) a -* b —> b'-- a' for any a,b«-L 1 
(iii)a a (a')' for any a € L , 
(iv) aVa'= 1 and aAa'= 0 for any a CL ( the symbols V f A 
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mean the lattice-theoretic operations induced by =* ) , 

(v) .V, a- exists in L whenever a.CL , a^ - a^ for i * j, 

(vi) b = a V ( b A a ' ) whenever a,b£L , a - b . 

For examples of logics may serve the <T-Boolean algebras or 
the lattice of projectors of a Hilbert space • In what follows we 
reserve the symbol L for logics. One can prove easily ( see e.g. 

[3] ) that if a,bCL , a = b' then a V b , a A b exists in L . 
PS.?iniii2n_-fL : T w 0 demerits a,b£L are called compatible if there 
are three elements c,d,e€L such that c - d ' , d-*e , e - c and 
a = c V d , b = c V e • An element a € L is called central if a is 
compatible with any element of L • We denote by C(L) the set of 
all central elements of L and call C(L) the center of L • 
P£2E2.§i.ti2n.l» : T n e set C(L) with the operations , V , A inheri­
ted from L is a ^-Boolean algebra . 

Proof : The set C(L) is contained in any maximal (T-Boole-
an subalgebra of L ( see [l] ) . Since C(L) is obviously the 
intersection of all maximal (T-Boolean subalgebras of L , we ob­
tain that C(L) is also a (f-Boolean subalgebra of L . 
2efinition_3_: Let {L^ I <*£l} be a collection of logics. De­
note by Jr^oc the ordinary Cartesian product of the sets L^ 

^ gr­
and endow the set c<̂ j--'oc with the relation = and the unary 

operation ' as follows. If k ={-^1 « € I} ̂ ^iLoc and n = 

{h^ I <* £ i} CJz1*>*o then k = h ( resp. k'= h ) if and only if 

k^ -s h a ( resp. k^. = h* ) for any <*€I . The set ^jLoc with 

the above defined - , ' is called the product of the collection 

{hoc I oc el] 

ProDosition_2_: Let { L ^ I occi] be a collection of logics . 
Then J^jl-ec is a logic . If C(L ) = {o,l} for any « € I 
then C( ̂ ^jl-oc ) is ^-Boolean isomorphic to the G*-Boolean 
algebra of all subsets of I 

The proof of Proposition 2 is easy • 
?S£initi2n_i_5 A state on a logic L is e mapping s ; L~*<b,l) 
such that (i) s(l) = 1 , (ii) if { a j ieNj is a sequence 
of mutually orthogonal elements of L then s(.V a.) = £ s(a.) . 

Let us denote by if (L) the set of all states on L . Befeic 
facts and some deeper properties of <P(L) may be found in [2] , [5] 
and [6] . In what follows we allow ourselves to assume that the 
reader is well acquainted with the results and the proof technique 
of the paper [6] • 
5£finition_5_: A logic is called poor (resp. rigid ) if S^(L) = <i 
(" resp. l£a)l= 1 ) . 
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It is known that there are (finite) examples of poor and ri­
gid logics ( see [2] , [6] ) . 

*E22222:±2:22_3_; Suppose that L is a poor logic . Put L ^ = L 
for any c*£l . Then ^'jL^ is also a poor logic . 

Proof : Take the mapping f: L '^Qcf1^oc s u c h that -fCk)* 
(k,k,k,...) for any k € L . If s C ? ( SCL^ ) then sf Cif(L) . 
?«£ .tSiii2D-Z- : A mapping f: L 1"^L 2 is called an embedding if f 
infective and the following requirements are satisfied 
(i) f(l) = 1 , 
(ii) f(a') = f(a)' for any a € L , 
(iii) a = b if and only if f(a) = f(b) , 
(iv) if a = b' then f(aVb) = f(a) Vf(b) . 

Froposition_4_: Any logic can be embedded in a poor logic with tri­
vial center • 

Proof : Let L be a logic • Take a poor logic M and form 
the disjoint union L-, U M . If we identify the 0 , 1 in L-, 
with the 0 , 1 in M , we obtain the desired logic • 

We are now ready to state our first result . 
Theorem_l_: Let P , Q be logics . Let C(P) be a Cf-Boolean al­
gebra of subsets of a set and let ^(Q) be compact • Then there 
exists a logic L such that C(L) = C(P) and ^(L) = ^(Q) . 

Proof 1 Since ?(Q) is compact , we may find a logic R 
such that !f(R) = ^(<i) , C(R) = {o,l} and any (T-Boolean 
subalgebra of R is finite ( see [j>] ) . Denote the poor exten­
sion of R by T (Proposition 4 ) . Write C(P)= (A, £ ) and 
take a point a£A . Put LQ = T if c € A - {a} , LQ = R . Con­
sider the logic V = df^I*d • The required logic L will be a su-
blogic of V . We are going to describe the elements of L . An 
element r C V belongs to L if (and only if) there exists a coun­
table partition Q of A , (P = {Ai / iCNJ , such that k^C B 
for any i£N , and r = r provided {p,q}^Ai for an index 
i€N . We must show that L is a logic with the property C(L) = 
C(P) = (A, £ ) and 3>(L) = Jf(R)( = ^ (Q)) . 

Let us first show that L is a logic . Evidently , 1 € L 
and if k c L then k € L . If k,hcL and k ^ h then k = h V 
(kAh ) . Indeed, if (P , <Q, are partitions corresponding to k,h 
then (Pn Gl is the ( countable ) partition correspnding to k'A h. 

It remains to show that any sequence fk^ I i^N} of mutually or­
thogonal elements has the least upper bound in L . This rather 
technical but essentially simple part of the proof is left to the 
reader . ( One uses the fact that any ^-Boolean subalgebra of R 
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is finite ) • 

Let us now check that C(L) = (A, £ ) . Since C(Ld)
 ={°>1] 

for any dCA , we see that any central element of L has only 

the elements 0 , 1 for the coordinates • One can show easily th8t 

k = £kd | d C A } , where any kd is either 0 or 1 , belongs to 

L if and only if D = £d | kd = 1 } € £ . This implies that C(L) 

= (A, £ ) . 
It remains to show that if (L) = y (R) . To this end, we 

need to exhibit an affine homeomorphism g : ¥ (L) —> ¥ (R) . 

Assume that s C ¥(L) • For any rCR we denote by kr the el­

ement of L which has r for all its coordinates . Define g(s) 

such that g(s)(r) = s(kr) • We have to show that g is injecti-

ve . 

Assume that g(s-,) = g(s?) • Take an element k CL and as­

sume that 0 is the partition corresponding to k • Let A, be 

be such an element of (P that a £A, . Denote by h = -{*hd | d C 

A } the element of L with hd = 0 if d£A 1 , hd = 1 other­

wise . It follows from Proposition 3 that s-j(kAh) = s^fkAh) = 

0 . Since we have g(s-i) = g(&2^ » w e s e e "tna't s, (k) = s, (k A 

h ) = Sp(k) • Therefore the mapping g is injective and the pro­

of is complete • 

The method of the above proof , applied with complete succes 

in [4] for the case of finitely additive states, requires herethe 

assuption of compactness of if (Q.) • What may go wrong in the con­

struction is the ^-completeness of L • The assumption on the 

compactness of ^(Q) is of course very restrictive - if e.g. 

iP (Q) does not have enough extreme points then i^(Q) is not 

compact ( Krein-Milman theorem ) • We do not know if (how) one can 

alter the construction to obtain the theorem for general ^(Q) • 

What can be seen quite easily is that the method works if we rest­

rict ourselves to certain special centers of P Let us mention 

two situations • 

S&S2E5S-1-.- L e t P , Q be logics . If C(P) = expS for a set S 

then there is a logic L such that C(L) = C(P) and ?(L)= -f(Q). 

The next theorem says that the countable-cocountable-type-

<T-algebras may be also allowed for C(P) 

Theorem_3_: Let P , Q be logics. Let C(P) has the following 

property ; If <P = (A , B j is a sequence of two-element-

partitiona of C(P) then there exists 0 countable partition of 

C(P) which refines any (P . Then there exists a logic L 

such that C(L) = C(P) and Sf7 (L) = ^(Q) • 
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Let us observe in conclusion an amusing corollary of Theo­

rem 1 - the existence of poor ("resp. rigid) logics with arbitrary 

centers • 
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