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A note on the extension of weak Radon measures on locally 

convex spaces to strong Radon measures 

Gerhard Winkler 

Abstract: It is well-known that on a metrizable locally convex 

space any weak Radon probability measure has a strong extension. 

We show by an example that metrizability is essential. Further, 

we give a short proof of the classical result using a theorem of 

R.E. Johnson. 

Let E be a separated locally convex vector space with topology 

Tf topological dual space E* and weak topology o(EfE'). 

The weak Borel o-algebra on a subset M of E - generated by the 

weak topology - is denoted by B (M); the strong Borel o-algebra 

- generated by T - by B (M). A probability measure on B Q(M) is 

called a weak Radon probability measure (w.R.p.m.) if it is 

Radon w.r.t. Mn a(EfE') and a probability measure on BT(M) is 

called a strong Radon probability measure (s.R.p.m.) if it is 

Radon w.r.t. Mflx. 

The following variant of theorems due to Phillips, Dunford-Pettis 

and Grothendieck is well-known: 

1.Theorem: Let E be a metrizable locally convex space. Then any 

weak Radon probability measure on E has a unique extension to a 

strong Radon probability measure on E. 
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A rather lengthy proof is given in [3], p. 162-166. We give a 

short proof which was indicated to us by J.P.R. Christensen. It 

is based on a theorem of R.E. Johnson ([2]), which was general

ized and supplied with a simpler proof by Christensen ([1]). As 

far as we know, there is no example in the literature showing 

that in theorem 1 metrizability is essential. We will present 

such an example below. 

We state Johnsons theorem in a version sufficient for our needs. 

A proof is given in [1]. 

2. Theorem: Let X and Y be compact spaces. Assume further that 

X is the support of some Radon probability measure.Then: 

if f : X x y -> ]R is a separately continuous function, the set 

(f(x,«):xGX}cC(Y) is separable in the supremum norm. 

The essential step in the proof of theorem 1 is 

3. Proposition: Let E be a Banach space with norm topology T 

and p a w.R.p.m. on E with weakly compact support C Then: 

a. the weak and strong Borel a-algebra coincide on C; 

b. the space (C,CnT) is Polish; in particular p is a s.R.p.m. 

on C 

Proof: Denote by B1 the weak*-compact unit ball of E'. Apply 

theorem 2 to the evaluation map f : c x B1 -> 1R > (x,tp) -> <p(x) 

to conclude that {f(x,•):x€C}c C(B1) is separable in the sup-

norm. Since the mapping C 3 x -+ f (x, •) € C (B') is an isometry, C 

itself is norm separable. Furthermore, C being weakly complete 
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is complete in the norm. As C is Polish, the weak and strong 

Borel c-algebra coincide on C ([3], p. 101) and p is a s.R.p.m.. 

Proof of theorem 1: 1. Observe that a w.R.p.m. is concentrated 

on a countable union of pairwise disjoint weakly compact sets. 

Apply proposition 3 to get the conclusion for Banach spaces E. 

2. Let now E be metrizable. We may assume that E is complete. 

Then E is isomorphic with the inverse limit of a sequence of 

Banach spaces E.. A w.R.p.m. on E induces a projective system 

of w.R.p.m. p. on the spaces E.. Extend these measures according 

to part 1 of the present proof to s.R.p.m. q.. The measures q. 

form a projective system . The projective limit is a s.R.p.m. 

on E which gives us the desired extension. 

Let us conclude with the announced example. 

Example: Let I be an uncountable index set and for each i£I let 
o 

E. be a copy of 1 CN ) ; denote the norm topology by T.̂ . Let 

further denote E the product of these spaces and T the product 

topology. We construct a w.R.p.m. on E which has no strong ex

tension. 

The measure ^ := I 2~ne , where e is the point measure on 
neu n 

the n-th unit vector of 1 (IN ) , is concentrated on a weakly 

compact set, but ^(K) < 1 for every norm compact set K. Let ^i 

be a copy of ^ on E. and Ci the weakly compact support of ^i. 

For a finite subset J of I consider the product measure ^J of 

the measures n., j€J, on ( n E., TT c(E.,El)). Let pr be the 
3 j€J 3 j€J J J 

canonical projection on E which is weakly continuous. 
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The measures |iT, Jci finite, together with the projections 

form a projective system of measures; the limit p on 

(E, n a ( E . , E ! ) ) exists since the u.. have weakly compact support 
i6I x 

(cf.[3], p.75). Because a(E,E*) = T7 a(E.,E!), we have con-
i€I 1 1 

structed a w.R.p.m. p on E. 

It cannot be extended to a s.R.p.m., since p(K) = 0 for every 

T-compact subset of E. In fact: 

According to the choice of \x we have 

U. (prr.j[K]) < 1 for every 16 I. 

Since I is uncountable, at least countably many of these numbers 

are bounded away from 1. This implies 

inf{ TT p, . (prr .-, [K]) :J finite subset of 1} = 0, 
j6J 3 XJI 

hence 

p(K) < i n f { p f p r ~ 1 p r ^ K ] j ; J c i f i n i t e } = 

= i n f { | i A p r A K ] ) : J c i f i n i t e } < 
J J 

< i n f { TT n A p r ( . J K ] ) : J c I f i n i t e } = 0. 
j 6 J D XJ} 
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