WSGP 7

Jaroslav Hrubý

Supersymmetric quantum mechanics and $U(N)$-nonlinear Schrödinger equation

In: Jarolím Bureš and Vladimír Souček (eds.): Proceedings of the Winter School "Geometry and Physics". Circolo Matematico di Palermo, Palermo, 1987. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplements No. 16. pp. [65]--70.

Persistent URL: http://dml.cz/dmlcz/701409

Terms of use:

© Circolo Matematico di Palermo, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

SUPERSYMMETRIC QUANTUM MECHANICS AND U(N)-NONLINEAR SCHRODINGER EQUATION

J. Hrubỳ

In recent time the application of the supersymmetric quantum mechanics (SSQM) to the vector version of the nonlinear Schrödinger equation,i.e. $U(N)-N L S$, was presented (HRUBÝ J. and MAKHANKOV VG.).

The $U(N)-N L S$ has the form
where

$$
\begin{equation*}
i \varphi_{N, A}+\varphi_{N x x}+\left(\bar{\varphi}_{N} \varphi_{N}\right) \varphi_{N}=0 \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
\varphi_{N}(x, t) & =\left(\varphi_{N, 1}, \cdots, \varphi_{N, m}\right)^{\top} \\
\varphi_{N} \varphi_{N} & =\sum_{j=1}^{m}\left|\varphi_{N, j}\right|^{2}, m \geqslant N
\end{aligned}
$$

The eq.(1) has a wide application in physics and the intensive study of this equation was started after the integrability of the $U(l)$ version (ZAKHAROV V.E. and SHABAT A.B.) and then of the vector versions $U(N), U(P, Q)$ was shown.

Here, we show a new possibility to investigate a new class of the soliton solutions of the $U(N)-N L S$.

A new particular class of the soliton solutions of eq.(1) has been obtained via the so-called factorization method and a technique, in a sense, similar to that developed by Krichever (KRICHEVER I.M.).

We show that these solutions are equivalent to the reflectionless symmetric potentials of the one-dimensional Schrödinger eq.:

$$
\begin{equation*}
i \psi_{t}+\psi_{x x}-U_{\psi}=0 \tag{2}
\end{equation*}
$$

where $\Psi(X, \not, k)$ is scalar complex function and k is the complex parameter.

In the case when the potentials $U \equiv \mu_{N}(x)$ have the form

$$
\begin{equation*}
\mu_{N}(x)=-N(N+1) b^{2} \operatorname{sech}^{2} b x_{1} \tag{3}
\end{equation*}
$$

for $N=1,2 \ldots$....we show that they correspond to the potentials obtafined via SSQM.

We can show this in the following way:
where

$$
\begin{equation*}
\varphi_{N}(x, t)=C e^{i W} \phi_{N}(y) \tag{4}
\end{equation*}
$$

$$
\begin{gathered}
\phi_{N}(y)=\left(\phi_{N, 1}, \ldots \phi_{N, m}\right){ }_{1}^{T} C=\operatorname{diag}\left(C_{1,}, C_{m}\right) \\
W=\operatorname{diag}\left(\theta_{1}, \ldots, \theta_{m}\right), \theta_{j}=\frac{v}{2}\left(x-\frac{v}{2} t\right)-\Lambda_{j} t, y=x-v t .
\end{gathered}
$$

We insert (4) into (1) to get

$$
\begin{array}{r}
\phi_{N, j}^{\prime \prime}-\mu_{N} \phi_{N i j}=-\Lambda_{j} \phi_{N i j} \tag{5}\\
\mu_{N}=-\sum_{j=1}^{m_{1}}\left|C_{j}\right|^{2} \phi_{N, j}^{2}
\end{array}
$$

Suppose the potentials μ_{N} to be in the form (3). Then (5) becomes

$$
\begin{equation*}
\phi_{N, j}^{\prime \prime}+N(N+1) b^{2} \operatorname{sech}^{2} b y \phi_{N, j}=-\Lambda_{j} \phi_{N, j} \tag{6}
\end{equation*}
$$

It is well known (KRICHEVER I.M.) that eq. (6) has,for arbitrary N, N eigenvalues $L_{j}=-j^{2} b^{2}, j=1,2, \cdots, N$.

The corresponding eigenfunction may be found by using the factorrization which is equivalent to the SSQM "square root", as it is usual:
we can define $A_{\ell}^{ \pm}$in the following way

$$
A_{l}^{ \pm}= \pm \frac{d}{d y}+v_{l}(y)= \pm \frac{d}{d y}+l b \text { th } y
$$

If we denote "supercharges" as

$$
Q_{l}^{-}=\left(\begin{array}{ll}
0 & 0 \\
A_{l}^{-} & 0
\end{array}\right) \quad, \quad Q_{l}^{+}=\binom{0 A_{l}^{+}}{00^{+}}
$$

then the SSQM "superalgebra" has the form:

$$
\begin{aligned}
& \left(Q_{l}^{-}\right)^{2}=\left(Q_{l}^{+}\right)^{2}=0 \\
& {\left[H_{S,}, Q_{l}^{+}\right]=\left[H_{S}, Q_{l}^{+}\right]=0} \\
& \left\{Q_{l}^{-}, Q_{l}^{+}\right\}=H
\end{aligned}
$$

where

$$
H_{S}=\left(\begin{array}{cc}
A_{l}^{+} A_{l}^{-} & 0 \\
0 & A_{l}^{-} A_{l}^{+}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{d^{2}}{d x^{2}}+v_{l}^{2}(x)+v_{l x}(x) & 0 \\
0 \cdot-\frac{d^{2}}{d x^{2}}+v_{l}^{2}(x)-v_{l}(x)
\end{array}\right)
$$

As is usual in SSQM,we define

$$
\begin{align*}
& A_{l+1}^{+} \phi_{l, j}=\phi_{l+1, j} \tag{7}\\
& A_{l+1}^{-} \phi_{l, j}=\phi_{l-1, j} \tag{8}
\end{align*}
$$

From (7) and (8) using

$$
\begin{equation*}
\phi_{\ell, j} \equiv 0 \tag{9}
\end{equation*}
$$

for $\ell>N$, we obtain all the solutions to eq.(6).
Some of them follow directly:
for $N=j=l \quad$ we get

$$
\begin{equation*}
A_{N}^{+} \oiint_{N, N}=0 \tag{10}
\end{equation*}
$$

and from this
$\bigoplus_{\substack{ \\\text { recurrent formula }}}$ sech by.
Generally, we have the recurrent formula

$$
\begin{equation*}
\phi_{l, j}=A_{l}^{+} A_{l-1}^{+} \ldots A_{j+1}^{+} \phi_{i, j} . \tag{11}
\end{equation*}
$$

Thus we obtain for $N=1=m$.ie. $l=j=1$ from (10)

$$
\begin{equation*}
\phi_{1,1} \sim \quad \text { sech by. } \tag{12}
\end{equation*}
$$

For $N=2$ we have two solutions corresponding to $\Lambda_{1}=-\mathcal{b}_{1}^{2} \Lambda_{2}=-4 b^{2}$. Then, from (10) ,it follows

$$
\begin{equation*}
\phi_{2,2} \sim \operatorname{sech}^{2} b y \tag{13a}
\end{equation*}
$$

and from (11) and (12) we get

$$
\begin{equation*}
\phi_{2,1}=A_{2}^{+} \phi_{1,1} \sim \text { the by seed by. } \tag{13b}
\end{equation*}
$$

So, we obtain from the relations (4) and (12) the known one-soliton solution of the $U(1)-$ NL

$$
\begin{equation*}
\varphi_{1}(x, t)=C e^{i \theta_{1}} \text { sech by } \tag{14}
\end{equation*}
$$

where $\mid C 1^{2}=2 b^{2}$.
For $N=m=2$, the solition solution to the $U(2)-N L S$ can be expressed as
where $\left|C_{1}\right|^{2}=\left|C_{2}\right|^{2}=6 b^{2}$.
Analogously for $\mathrm{N}=\mathrm{m}=3$ and so on.
The general expression for the symmetric reflectionless patentials $\mu_{N}(X)$ in (3) can be given in SSQM following Sukumar (SUKUMAR co.):

$$
\begin{equation*}
u_{N}=-2 \frac{d^{2}}{d x^{2}} \ln \operatorname{det} \square_{N} \tag{16}
\end{equation*}
$$

where the elements of the matrix \square_{N} are given by

$$
\begin{equation*}
\left[D_{N}\right]_{J k}=\frac{1}{2}\left(\mu_{k}\right)^{J-1}\left[e^{\mu_{k}^{x}}+(-1)^{J+k} l^{-\mu_{k} x}\right] \tag{17}
\end{equation*}
$$

and the normalised eigenfunction for the eigenenergy may be written in the form

$$
\begin{equation*}
\widetilde{\varphi}_{N}\left(E_{j}\right)=\left[\frac{\mu_{j}}{2} \sum_{K \neq j}^{N}\left|\eta_{k}^{2}-\mu_{j}^{2}\right|\right]^{\frac{1}{2}}\left[D_{N}^{-1}\right]_{j N} \tag{18}
\end{equation*}
$$

where $\mathrm{j}=1,2, \ldots, \mathrm{~N}$.
For $N=2, f r o m$ the relations (16-18) it follows

$$
\begin{align*}
& D_{2}=\left(\begin{array}{cc}
c h \mu_{1} x & s h \mu_{2} x \\
\mu_{1} s h p_{1} x & \mu_{2} c h \mu_{2} x
\end{array}\right) \text {, } \tag{19}\\
& m_{2}(x)=-2\left(y_{2}^{2}-\mu_{1}^{2}\right) \frac{\mu_{2}^{2} c h_{1}^{2} 1_{1} x+\mu_{1}^{2} \Delta h^{2} \mu_{2} x}{\left(\mu_{2} c h p_{2} x \operatorname{ch} \mu_{1} x-\mu_{1} s h \mu_{2} x s h \mu_{1} x\right)^{2}},(\tag{20}\\
& \widetilde{\varphi_{2}}\left(E_{1}\right)=\left[\frac{\mu_{1}}{2}\left(\mu_{2}^{2}-\mu_{1}^{2}\right)\right]^{\frac{1}{2}} \frac{s h \mu_{2} x}{d e t D_{2}} \tag{21}\\
& \tilde{\varphi}_{2}\left(E_{2}\right)=\left[\frac{\mu_{2}}{2}\left(x_{2}^{2}-{f_{1}}^{2}\right)\right]^{\frac{1}{2}} \frac{\text { ch } \mu_{1} x}{d e f D_{2}} \tag{22}
\end{align*}
$$

We now show how this results of SSQM coincide with results in ref.(MAKHANKOV V.G. and MYRZAKULOV R.).

The possibility to use the eq.(2) for constructing the solutions of the eq.(1) is valid from the following:
in the k-plane there exist N points $k_{j}, j=1,2, \ldots, N$ and the relaylion

$$
\begin{equation*}
m_{N}(x, 才)=-\sum_{j=1}^{N}\left|C_{j}\right|^{2}\left|\psi\left(x, \hbar_{1}, k_{j}\right)\right|^{2} \tag{23}
\end{equation*}
$$

where $C_{j}=$ cons., is valid.
It means , that the functions

$$
\varphi_{N, j}=C_{j} \psi\left(x, \not t_{1} k_{j}\right)
$$

are the solutions $U(N)$ of the eq.(1).
The solution of eq.(2) has the form

$$
\begin{equation*}
\psi(x, t, k)=e^{i k y-i k^{2} t+i \alpha}\left(1+\frac{i \xi_{1}}{2 k}+\frac{\xi_{2}}{4 k^{2}}+\frac{\xi_{3}}{k^{3}}+\cdots+\frac{\xi \pi}{k^{n}}\right), \tag{24}
\end{equation*}
$$

where $\quad \alpha=\frac{v}{2}\left(x-\frac{v}{2} t\right), \xi_{j}=\xi_{j}(y), \quad y=x-v t$.
We discusses these solutions for $m=1,2$. When $N=1$ and $m>1$ we get the known vector generalization of the solution (14). For $N=2$ we put (24) in (2) and we get

$$
\begin{equation*}
U+\xi_{1}^{\prime}=\xi_{1}^{\prime \prime}+\xi_{2}^{\prime}-U \xi_{1}=\xi_{2}^{\prime \prime}-U \xi_{2}=0 \tag{25}
\end{equation*}
$$

From (24) follows:

$$
\begin{align*}
& \quad \xi_{2}+\xi_{1}^{\prime}+\frac{1}{2} \xi_{1}^{2}-2 a= \\
& =\frac{1}{2} \xi_{2}^{2}+\xi_{1}^{\prime} \xi_{2}-\xi_{1} \xi_{2}^{\prime}-2 b=0 \tag{26}
\end{align*}
$$

where $a, b=c o n s t$.
Eliminating ξ_{2} from (26) and putting

$$
\xi_{1}=\frac{2 E^{\prime}}{R}
$$

we obtain:

$$
\begin{equation*}
z^{(I r)}-2 a \dot{z}^{\prime \prime}+\left(a^{2}-b\right) z=0 \tag{27}
\end{equation*}
$$

One solution of eq.(27) has the form

$$
\begin{array}{ll}
\dot{z}(y)=2 x \operatorname{chv} y & +2 v \operatorname{ch} x y \\
a=\frac{1}{2}\left(v^{2}+x^{2}\right) \quad b=\frac{1}{4}\left(v^{2}-x^{2}\right)
\end{array}
$$

when
So we get $\quad \psi(x, \not, k)=e^{i k y-i k t+i \alpha} \phi(y, k)$,

$$
\begin{aligned}
& \phi(y, k)=1+\frac{i x v}{k}\left[\frac{\Delta h x y+\Delta h v y}{x c h r y+v c h x y}\right]+\frac{x^{2}-r^{2}}{4 k^{2}}\left[\frac{x \operatorname{ch} v y-v c h x y}{x \operatorname{ch} v y+v d x y}\right] \text {, }
\end{aligned}
$$

The function $\psi(x, \not, k)$ in the points $k_{1,2}= \pm \frac{i}{2}(\nu \mp y)$ has the form:

$\psi\left(x_{1} t, k_{2}\right)=e^{i k_{2} y-i k_{2}^{2} t+i d}(x+\gamma) \frac{\operatorname{sh} v y+\operatorname{sh} x y-\operatorname{shv}-\operatorname{ch}-\operatorname{ch} x y}{v y+v \operatorname{ch} x y}$ (30)
The following is valid:

$$
\omega\left(x_{1}, \mid\right)=-\left|C_{1}\right|^{2} \mid \psi\left(\left.x_{1} \hbar_{1} k_{1}\right|^{2}-\left|C_{2}\right|^{2}\left|\psi\left(x, t_{1} k_{2}\right)\right|^{2}\right.
$$

where $\quad\left|C_{1}\right|^{2}=\left|C_{2}\right|^{2}=(8 x V)^{-\frac{1}{2}}$.
Formulae (28),(29),(30) coincide exactly with formulae (20),(21), (22) obtained via SSQM after reparametrization $x=-\left(y_{1}-y_{2}\right), V=y_{1}+y_{2}$

It can be also shown, that for given N, the number of coefficients
is the same as the number of the binomial coefficients in the following expansion:

$$
1 \equiv\left(1+s^{2} b y\right)^{n-1} / \mathrm{Ch}^{2(m-1)} \mathrm{by} .
$$

In this short communication we showed the application of SSQM to the $U(N)-N L S$.

The symmetric reflectionless potentials are obtained here as linear combinations of the eigenvalue solutions.

The symmetric reflectionless SSQM potentials from ref.(SUKUMAR C.V.) and those obtained via familiar factorization method naturallily coincide up to reparametrization.

REFERENCES

HRUBY'J.and MAKHANKOV V.G."On the SSQM and nonlinear equations", Dubna Preprint,December (1986) ,to be publ.
KRICHEVER I.M."Sov.Funct.Anal.", v.20,n. 3 (1986).
MAKHANKOV V.G. and MYRZAKULOV R."New class of soliton solution...", Dubna Preprint P5-86-356 (1986).
SUKUMAR C.V."Supersymmetry,potentials with bound states at arbitrary energies and multi-soliton configurations", J.Phys.A Math.Gen.,19 (1986)2297-2314.
ZAKHAROV V.E. and SHABAT A.B. JETP ,V. 61 (1971)118.
J. GRUB $\overline{\text {, Institute }}$ of Plasma Physics,CSAV, 18211 Prague 8,CSSR

