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SUPERSYMMETRIC QUANTUM MECHANICS AND U(N)-NONLINEAR 

SCHRÖDINGER EQUATION 

3. Hruby 

In recent time the application of the supersymmetric quantum 

mechanics (SSQM) to the vector version of the nonlinear Schrodin-

ger equation,i.e. U(N)-NLS,was presented (HRUB? 3. and MAKHANKOV 

V.G.). 

The U(N)-NLS has the form 

* %,, + %a * ($$)?*? ° . (i) 

M« ' £ W * ̂ iN • 
The eq.(l) has a wide application in physics and the intensive 

study of this equation was started after the integrability of the 

U(l) version (2AKHAR0V V.E. and SHABAT A.B.) and then of the vector 

versions U(N),U(P,Q) was shown. 

Here,we show a new possibility to investigate a new class of the 

soliton solutions of the U(N)-NLS. 

A new particular class of the soliton solutions of eq.(l) has 

been obtained via the so-called factorization method and a technique, 

in a sense,similar to that developed by Krichever (KRICHEVER I.M.). 

We show that these solutions are equivalent to the reflectionless 

symmetric potentials of the one-dimensional Schrodinger eq.: 

*?* * f*x - Uf * 0 , (2) 

where LU(X Jrfe) is scalar complex function and /# is the complex 

parameter. 

In the case when the potentials L/*/^(x)have the form 

M*HU) -- - H[U+<1)J>1
/$tcLtfa<l (3) 
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for N«1.2...
f
we show that they correspond to the potentials obta

ined via SSQM. 

We can show this in the following way: 

(j„i*,i) -- cr^ifi, (4) 

where faM - ( J*,,,,.. . fa^C'di*)^...^) 

We insert (4) into (1) to get 

tt.r M*fy'\A<fii • 
Suppose the potentials J/,^ to be in the form (3).Then (5) be-N 

cornes 

It is well known (KRICHEVER I.M.) that eq. (6) has,for arbitrary 

N
f
 N eigenvalues /ty - - A' Jf ( A * ̂  2-, • • • , ^. 
The corresponding eigenfunctions may be found by using the facto

rization which is equivalent to the SSQM "square roof,as it is usu-

l\, in t\ we can define n, in the following way 

A+ = i --- + 

If we denote" "supercharges" as 

A ; = - ̂  + кy - Ť Ą* 
OÁÎ 

then the SSQM "superalgebra" has the form: 

(<?;.*« .<?;,* - o , 

L H s . ^ J - K & ' J - O , 

Hs ' \ o A;A; I { o- -£.*".'»>-A"! 
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As is usual in SSQM,we define 

A'" <P*,j ' $ A * * , j <7> 
A~« Aj " fy-,,! W 

From (7) and (8) using 

(9) &,/ £ 0 
for Z>lv fwe obtain all the solutions to eq.(6). 

Sorae of them follow directly: 
for N * A z JL we get 

and from this J. ^ , ff N Q 
YNV ^ A*W M • (10) 

Generallyfwe have the recurrent formula 

h,i - K C • • • ̂  hi • 
Thus we obtain for N ' 4 * /to- . i . e . /v r A * 4 from (10) 

6 ~ Al°L Jrif* . (12) 

For N»2 we have two solutions corresponding to A^~ ~ ft A^ ~ I" . 
Then,from (10),it follows 

(j)iit ~ /VLoL Jrll (13a) 

and from (11) and (12) we get 

f v ' = ^ - ^ ^ A A &OLA . (i3b) 

Sofwe obtain from the relations (4) and (12) the known one-soliton 
solution of the U(1)-NLS 

r\ ' f t 

(f(*J) * C PL * A^cL JrlA j (14) 

where / (" I * I ft . 
For N»ma2,the sollton solution to the U(2)-NLS can be expressed 
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where !Cjl - / C j * - 6**. 
Analogously for N»m«3 and so on. 
The general expression for the symmetric reflectionless poten

tials JLL> (X) in (3) can be given in SSQM following Sukumar (SUKUMAR 
N 

C.V.): 

fxN - -i£A-^DN , («, 
where the elements of the matrix U>. are given by 

Wn-i(fj"l*h** /-w'VAI.-, 
and the normalised eigenfunctions for the elgenenergy 
may be written in the form .. 

?.",'• Itl,1'-'-fitI°?1,-. •-
where j«l,2f...fN. 

For N«2ffrom the relations (16-18) it follows 

__ ,ckfX J.M,*\ 
1 \fA^hX fMJ J ' 

/n,(x) - -1 (p -p >(fl^ky - i ALfUf,*)1'(20) 

%^)-\k(fi-f)]> £f% / (21) 

x 
• (22) 

We now show how this results of SSQM coincide with results in 
ref.(MAKHANKOV V.G. and MYRZAKULOV R.). 

The possibility to use the eq.(2) for constructing the solutions 
of the eq.(l) is valid from the following: 

in the k-plane there exist N points Jk; ,j«lf2f... fN and the rela-
tlon w 

4 
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where C/ * Const. ,is valid. 
It means

 f
that the functions 

H»A - CiVJ.&j) 
are the solutions U(N) of the eq.(l). 

The solution of eq.(2) has the form 

yix.t.h *fi'M*A>&«&•jh• • -•*fa), 

»h.re I . f (x - f^j , ft - f,-fy) , ̂  = JT-W. 

We discusss these solutions for m«i
f
2.When N»l and /W^ > '* we 

get the known vector generalization of the solution (14). 

For N«2 we put (24) in (2) and we get 

(24) 

0 

From (24) follows: \ A , n 

f » 4 f, * i f. " -* "" 
= if>'f,Vf<f/-^'°. 

where a,boconst. 
Eliminating f from (26) and putting 

c i*L 

we o b t a i n : 

e 0 " - Uift (a.1**)*- 0 . 

One solution of eq.(27) has the form 

( 2 5 ) 

( 2 6 ) 

( 2 7 ) 

when (X, _ , , „ 

Soweget Ц j C x , / , Я - ^ " ^ ^ ^ t ^ i j , 

A, ,, Л Л*v- f^^ +ÅЦ] , Зtł- У2f^У-V --У0-C.K-Ң l 
(f> f<4, лí) - Ą •* ^jfЩ+yЩJ 4ДZ [кckvÁ+vóLĄJ ' 

' (tXöMl/U t УCІ«CJ )* 
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The funct ion U> (X , / , * ) i n the points A1tl ' S l ^ ^ ' 

has th form: 

r ^ , U -t,''i-"' o-y)^ Í£L-*&lf*l,i»> 
4ţ + yHktLo 

џi*t*,k)~t< o frnì—Цic&l f Д*, ř -(30) 
[Vs- ' r J w flco^M f v<%scu v 

The following is valid; 

/orV> « -lcjx/ti>(*l*ti,il
l-tcjxl<f<*,',**>/* 

where (C,/ 2 = / ̂  /* « (<fW/"* . 
Formulae (28),(29),(30) coincide exactly with formulae (20),(21), 

(22) obtained via SSQM after reparametrlzation <£ - ~ W^fi) , V * f**fi 
It can be also shown,that for given N,the number of coefficients 

is the same as the number of the binomial coefficients in the 

following expansion: 

In this short communication we showed the application of SSQM 

to the U(N)-NLS. 

The symmetric reflectionless potentials are obtained here as li

near combinations of the eigenvalue solutions. 

The symmetric reflectionless SSQM potentials from ref.(SUKUMAR 

C.V.) and those obtained via familiar factorization method natura

lly coincide up to reparametrlzation. 
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