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GENERAL POISSON ALGEBRAS 

Janusz Grabowski 

1.Introduction. 

In contact and symplectic geometries the algebra C00(M) of smooth 

functions on a given manifold M is additionally furnished with a Lie 

algebra structure given by the corresponding Poisson bracket. 

These Lie algebras are closely related to the Lie algebras of contact 

and hamiltonian vector fields on M .More precisely,let (M,<J) be a C00 

symplectic manifold,i.e. tv is a closed non-degenerated 2-form on M . 

The symplectic form co induces the isomorphism M : TM »T*M of 

the tangent and cotangent bundles defined by M(X) = -i^u) ,where 

iyCJ denotes the interior multiplication. 

Put f =^~1(df) for f €C°°(M) .The vector fields of the form f 

are called hamiltonian and they can be also described as those vec

tor fields X for which iy^ is an exact 1-form. 

The family rZo(M) of all hamiltonian vector fields is a Lie sub-

algebra in the Lie algebra of all smooth vector fields. 

The Poisson bracket ( , ) in C°°(M) defined by (f,g) • f(g) is 

a Lie bracket,i.e. it makes C (M) into a Lie algebra.Moreover,the 

mapping : C (M) * ̂ ( M ) is a Lie algebra surjective homomor-

phism with the kernel consisting of constant (locally) functions. 

The Poisson bracket can be also expressed in the form (f>g) = 

= W (df/\dg) ,where Sd is a 2-vector field corresponding to the 

2-form Co via the isomorphism of tensor bundles induced by M 

Since vector fields act on C (M) as derivations of the associative 

algebra,it is easy to prove the formula 

(1) (f,gh) = (f,g)h + g(f,h) 

Such objects were investigated from an algebraic point of view in 

tl] and [4l . 
Let now (M, f>) be a contact C^-manifold of dimension 2n + 1 ,i.e. 

& is a 1-form such that h /\(&fi)n does not vanish on M .Then we 

have the splitting TM = Ker(^) © Ker(dy3) ,where * 

Ker(A) = {X6TM : ±xf> = OJ and Ker(dji) = |X€TM : ijdj-S = 0$ 
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are vector bundles of dimensions 2n and 1 .Notice that Ker(dfi) 

is generated by the unique vector field Y satisfying iyji = 1 

and iydp = 0 •-Che vector bundle homomorphism 

yU : TM 9 X'—> i.y&P> £ T*M 

restricted to Ker(^>) is an isomorphism onto a subbundle B of T*M. 

We have the splitting T*M = B © IRf> and the projection P:T*M *B. 

The mapping ft—-*-f = )A~ (P(df)) + f Y is a linear isomorphism of the 

space C°°(M) onto the Lie algebra PA (M) of contact vector fields, 

i.e. the vector fields satisfying L^f> = f^f> for some fxeC°°(M) 

(L„ is the Lie derivative along X ). 

The contact Poisson bracket in C°°(M) is then defined by (f,g) = 

= f(g) - gY(f) and it makes C°°(M) into a Lie algebra such that 

the mapping * : C ( M ) — ^ P A ( M > is a Lie algebra isomorphism. 

One can check that we have a similar to (1) formula 

(2) (f,gh) = g(f,h) + (f,g)h + gh(l,f) 

which becomes identically (1) if ad.= 0 • 

Since d£ is non-degenerated on Ker(A) ,it corresponds via the 

homomorphism yU to a 2-vector field Q such that i A ^ = 0 and the 

contact Poisson bracket can be also written in the form 

(3) (f,g) = Q(dfAdg) + fY(g) - gY(f) . 

All this was generalized by A.A.Kirillov [6] who showed that every 

local Lie algebra of one-dimensional bundle (i.e. the space P(--) of 

smooth sections of a one-dimensional vector bundle E over a manifold 

M ,equipped with a Lie bracket ( , ) such that supp((f,g)) is 

contained in supp(f)osupp(g) ) is of this type .More precisely, 

since P(E) is locally the space of smooth functions,there are a 

2-contravariant tensor field Q. and a vector field Y such that loca

lly the Lie bracket in T(E) is of the form (3) . 

It is clear that such .Q and Y should satisfy some additional condi

tions to define a Lie bracket (see §«3»)» 

Since the formula (2) is purely algebraic,it allows us to propose 

the following definition. 

Definition. A general Poisson algebra is an associative commutative 

algebra A with unit element 1 furnished additionally with a Lie 

bracket ( , ) such that (2) holds true for all f,g,h€A . 

Remark that we were recently informed that such structures had 

been also investigated by S.M.Skriabin in his thesis [ill. 

It is interesting that the formula (2) holds true also in some non-

commutative cases,namely for associative (non-commutative) algebras 

with the natural Lie bracket (X,Y) = XY - YX (see Ul ) . 
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In §.3« we will show that the formulas (2) and (3) are in fact equi

valent even in a purely algebraic sense • 

2. Other examples. 

Another example of a general Poisson algebra is the algebra G (M) 

with the bracket (f,g)v = fY(g) - gY(f) for Y being a vector 

field on M . It is a particular case of (3) with Q = 0 , but it is 

rather important,since it appears when you work with Lie algebras of 

vector fields which are C (M)-modules,e.g. the Lie algebras of vec

tor fields tangent to a given generalized foliation (see [3] and[5l). 

Indeed,for a vector field Y and f,g£C°°(M) we have [fY,gY] » 

= (f,g)yY . 

Finally,let us consider an example from unimodular geometry. 

Let (M,n) be an unimodular manifold of dimension n ,i.e. *) is a 

nowhere-vanishing n-form on M .We have the bundle isomorphism 

M : TM ^x .—*ixvi€. An~1T*M .The Lie algebra f\i(M) of divergence 

free vector fields corresponds via this isomorphism to the space of 

closed (n-1 )-forms.The derived ideal Trj (M) = [ Tn(M), Tn(M)1 con

sists of vector fields corresponding to exact (n-1)-forms. Thus we 

have the surjective mapping ~ : Q n~ (M) > Tri(M) from the space 

Q n" 2(M) of (n-2)-forms onto Pr? (M) defined by oC «M~1(doO with 

the kernel consisting .of closed (n-2)-forms« 

The C°°(M)-module Q n~ 2(M) is finitely generated by the forms 

<* m df 1A...Adfn-2 ,where f.,.. .,fn_2 t C°°(M) .For such an oL the 

bracket ( , ) ^ defined on CW(M) by (f,g)^ = (f<*Mg) is a Lie 

bracket,and since [(foO ,(g<*)~] = ((f,g)/>0 ,the mapping 

^ : C°°(M)^f =>f =- (fcO^C ^(M) 

is a Lie algebra homomorphism. 

It is easy to see that C (M) with ( , )^ is a general Poisson 

algebra for which ad^ « 0 and hence f\(M) is a finite sum (non-

direct in general) of quotients of general Poisson algebras. 

3. The Kirillov formula for general Poisson algebras. 

Suppose that A with the Lie bracket ( , ) is a general Poisson 

algebra.Observe that ad. is a derivation of the associative algeb

ra A ,since by (2) (l,gh) - (U,g)h + (l,h)g + gh(H,l) and the last 

term in the sum equals zero.Denote o( = ad^ .It is easy to verify 

that for each fe A the mapping Df : A3g'—* (f,g) +o<(f)g£A 

is also a derivation of A .Hence the skew-symmetric bilinear 

co : Ax A >A given by co(f,g) • Df(g) - fot(g). satisfies 

(f,g) . 6J(f,g) + f<*(g) - g o t ( f ) and cj(f,#) is a derivation of 
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A for each f €A . This is exactly the Kirillov form of the Lie bra

cket for local Lie algebras of one-dimensional bundles. 

To see what are the relations between CJ and <x ,it is convenient to 

introduce some notions. The ideas are in fact well-known and they 

can be found in [2] (cf. also [7] ). 

Let A be a commutative associative algebra with unit element 1 

over a field K of characteristic zero, and let V (A) , p>1 , be 

the space of all p-linear antisymmetric mappings 

0^2 A IK ... X A } A . "n—+00 

Denote VQ(A) . A , V (A) - {o} for p < 0 ,and V(A) = (^)=.00
v
p(

A) • 

V(A) with the exterior multiplication 

0 ( AM f1'---' fa +b
) -

= a7FT^S£S(a +b)
s^ ( s )* ( fs(l)'-^^ ' 

where d £ V (A) , ft£V,(A) , and S(a+b) stands for the symmetric 

group, is a graded commutative algebra,i.e. the multiplication 

is associative and we have UA & =- (-l)a /3A<* 

The exterior derivative d : V (A) >V +1(A) , defined by 

dc/(f1f...,fp+1) - S i l , (-D
i + 1fi^(f1,...,fi,...-fp+1) 

satisfies d = 0 and it is a graded derivation of V(A) of degree 

one,since d(*Aj2>) = d<x:AfJ + (-l)ac*AC-A for o^^VjA) . 

Given o(£V (A) , A£V,(A) , the interior multiplication 

itfP(f1,,
1
#-,fa+b-1) s 

= a!(b-l)! 22 s^SsSn(s)f>(^(fs(D'---'fs(a))'fs(a+l)'---'
fs(a+b-l)

) 

defines a graded der iva t ion i ^ : V(A) *V(A) of degree (a-1) , 

The graded commutator [ - L ^ i J = i ^ ' i * - (-1 ) ^ a " 1 ) ( b " 1 )iA&i<^ 

equals i ^ , where Lo/,J>>] = y | 4 - (-1 ) ( a " 1 ) ( b ~ 1 h.« 

One can prove t h a t V(A) equipped with the bracket f , J becomes a 

graded Lie a l g e b r a , i . e . t , 3 i s b i l inea r ,g raded anticommutative 
( t ^ f r l - - ( - l ) ( a " 1 ) ( b " l ) [A,* J ),and s a t i s f i e s the graded Jacob! 

identity [tfflj>frfl = [ W , f l , * ] + (-1 ) ( a " 1 ) ( b " 1 ) [ fi,[U , r\] • 
Consider in the space V (A) the subspace Der (A) cons i s t ing of 

p - l i nea r de r iva t ions of A , i . e . U£ Der (A) i f and only i f 

i f ^ = ( f i + g i f )o l for a l l f , g €A . In p a r t i c u l a r , DerAA) i s 

the space of der iva t ions of A . D=+CO 

I t i s not haufd to ver i fy t h a t the space Der^(A) = (jL^JDer (A) 

i s a graded commutative subalgebra and a graded Lie subalgebra of 
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V(A) .It can be called the Schouten-Ni3ennuis algebra of A ,since in 

the case A = C°°(M) one can identify (Der.^(A), L>3 ) with the 

space of skew-multivector fields with the Schouten-Nijenhuis brack

et (cf. [9], [10] , [12] ) .For ctfcDer^A) the mapping L u = ad^ is a 

graded derivation of V(A) of degree" 0 called the Lie derivative 

along oC .Note also that for oC € Der^(A) we have 

(4) î oC = 0 and î do. = U 

The Jacobi identity has a simple expression in terms of the Schouten 

-Nijennuis bracket,namely for co^Vp(A) we have (cf. 1.8] ) 

2( CJ(f,co(g,h)) + co(g,co(h,f)) + co(h,CO(f,g))) = |o,ol(f,g,h) . 

Thus a skew-symmetric bilinear mapping 6J : A;*A—>A defines a Lie 

bracket in A if and only if Lco,c->] = o • 

We showed that for each general Poisson algebra A there are 

0£Der2(A) and <*£Der(A) such that 

(f,g) =Co(f,g) + foc(g) - gtf(f) . 

In the introduced language f«^(g) - g<̂ (f) = do((f,g) ,so 

( , ) = Co + dol and from the Jacobi identity we get [o+dot,o+do-] = 0. 

One can prove that for cO^Der2(A) and o*L6Der(A) we have 

[do<,doc] = 0 and [cj,d^] = 3oA.v+ dtcx',ojl ,that implies 

(5) 0 = [co+deCjCj+dty] = [p,co] + 6coAtf + 2d[<^,(oJ 

But L^,c] $ cOAtf , [co,oi €. Der^(A) and by (4) and (5) 

0 = i 1 ( [co,coj + 6CJAO>) + 2i1d[c<fcj] = 0 + 2[<^,cJj 

Hence (5) i s equivalent to the system of e q u a l i t i e s 

[tf,to] = IĴ CO = 0 and [CJ,CJ1 + 6CJAO. = 0 , 

t ha t proves the fol lowing. 

Theorem. Let A be an a s soc ia t ive commutative a lgebra with u n i t e l e 

ment over a f i e l d of c h a r a c t e r i s t i c zero . 

Then A with the bracket ( , ) i s a general Poisson a lgebra i f and 

only i f ( , ) = c-J + doc for some u)6 Der2(A) , oc£Der(A) s a t i s 

fying the e q u a l i t i e s 

i ) L^co = 0 

and 

i i ) [co,u;] + 6CJAO£ = 0 
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