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GENERAL POISSON ALGEBRAS

Janusz Grabowski

1.Introduction.

In contact and symplectic geometries the algebra c®(M) of smooth
functions on a given manifold M is additionally furnished with a ILie
algebra structure given by the corresponding Poisson bracket.

These Lie algebras are closely related to the Lie algebras of contact
and hamiltonian vector fields on M .More precisely,let (M,w) be a C™
symplectic manifold,i.e. w is a closed non-degenerated 2-form on M .
The symplectic form w induces the isomorphism /K : M—T*M of
the tangent and cotangent bundles defined by /M(X) -ix ,where
ixcn Adenof?s the interior :Pltiplication. .
Put f =M (df) for feC (M) .The vector fields of the form f
are called hamiltonian and they can be also described as those vec-
tor fields X for which ixcu is an exact 1-form.

The family  [(;(M) of all hamiltonian vector fields is a Lie sub-
algebra in the Lie algebra of all smooth vector fields.

The Poisson bracket ( , )} in C%®(M) defined by (£,g8) = f(g) is
a Lie bracket,i.e. it makes Cm(M) into a Lie algebra.Moreover,the
mapping *: c®(M) — rw(M) is a Lie algebra surjective homomor-
phism with the kernel consisting of constant (locally) functions.
The Poisson bracket can be also expressed in the form (f,g) =

=§? (dfndg) ,where §2 is a 2-vector field corresponding to the
2-form ¢ via the isomorphism of tensor bundles induced by ,A .
Since vector fields act on C®(M) as derivations of the associative
algebra,it is easy to prove the formula

(1) (f,gh) = (f,8)h + g(£f,h) .

Such objects were investigated from an algebraic p01nt of view in
(1] and [4] .

Let now (M, p) be a contact C™-manifold of dimension 2n + 1 ,i.e.
ﬁ is a 1-form such that B A (q&) does not vanish on M ,Then we
have the splitting T = Ker(ﬁ) G)Ker(dﬁ) ,where *

Ker(/s) {xem : 1,p=0f and Ker(dp) ={X €M : iydp = 0}
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are vector bundles of dimensions 2n and 1 .Notice that Ker(dp)
is generated by the unique vector field Y satisfying ti =1
and inP = 0 .The vector bundle homomorphism

M2 MO X—> 1,4 ¢ T'M _
restricted to Ker(ﬁ) ig an isomorphism onto a subbundle B of M,
We have the splitting T'M = B ® Rp and the projection P:T*M—B.
The mapping fr—at = '1(P(df)) + fY is a linear isomorphism of the
space C®(M) onto the Lie algebra Pﬁ(M) of contact vector fields,
i.e. the vector fields satisfying pr = fyp for some f ec?(M)
(Ly is the Lie derivative along X ).
The contact Poisson bracket in C®(M) is then defined by (f,g) =
= ?(g) - gY¥(f) and it makes C”(M) into a Lie algebra such that
the mapping *: Cw(M)‘—9rb(M) is a Lie algebra isomorphism.
One can check that we have a similar to (1) formula

(2) (f’gh) = g(f,h) + (f’g)h + gh(1lf)
which becomes identically (1) if ady=0 .
Since dp is non-degenerated on Ker(ﬁ) ,it corresponds via the
homomorphism fa to a 2-vector field S2 such that iﬁS2 = 0 and the
contact Poisson bracket can be also written in the form
(3)  (f,8) = Q(dfadg) + £Y(g) - g¥(£) .

A1l this was generalized by A.A.Kirillov [6] who showed that every
local Lie algebra of one-dimensional bundle (i.e. the space ["(E) of
smooth sections of a one-dimensional vector bundle E over a manifold
M ,equipped with a Lie bracket ( , ) such that supp((f,g)) is
contained in supp(f)nsupp(g) ) is of this type .More precisely,
since " (E) is locally the space of smooth functions,there are a
2-contravariant tensor field $2 and a vector field Y such that loca-
11y the Lie bracket in [T (E) 1is of the form (3) .
It is clear that such §2 and Y should satisfy some additional condi-
tions to define a Lie bracket (see §.3.).
Since the formula (2) is purely algebraic,it allows us to propose
the following definition.

X

Definition. A general Poisson algebra is an associative commutative
algebra A with unit element 1 furnished additionally with a Lie
bracket ( , ) such that (2) holds true for all f,g,h€A .

Remark that we were recently informed that such structures had
been also investigated by S.M.Skriabin in his thesis [11].
It is interesting that the formula (2) holds true also in some non-
commutative cases,namely for associative (non-commutative) algebras
with the natural Lie bracket (X,Y) = XY - YX (see [4] ) .
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In §.3. we will show that the formulas (2) and (3) are in fact equi-
valent even in a purely algebraic sense .

2. Other examples.

Another example of a general Poisson algebra is the algebra C™(M)
with the bracket (f,g)Y = fY(g) - g¥(f) for Y Dbeing a vector
field on M . It is a particular case of (3).with =0 s but it is
rather important,since it appears when you work with Lie algebras of
vector fields which are C&(M)-modules,e.g. the Lie algebras of vec-
tor fields tangent to a given generalized foliation (see [3] and[5]).
Indeed,for a vector field Y and f,g€C™M) we have [fY,gY] =
= (f’g)YY .

Finally,let us consider an example from unimodular geometry.
Let (M,v[) be an unimodular manifold of dimension n ,i.e. 'l is a
nowhere-vanishing n-form on M .We have the /lzundle isomorphism
I ™ 3 X+—>i vl /\n—1T”‘M .The Lie algebra l"yl(M) of divergence
free vector fields corresponds via this isomorphlsm to the space of
closed (n-1)-forms.The derived ideal ryl(M) = [\"q(M), vl(M)_] con-
sists of vector fields corresponding to exact (n-1)-forms.Thus we
have the surjective mapping ~: G2 2(M)—> 'n(M) from the space
S2772(M) of (n-2)-forms onto I'f (M) defined by & =M~'(aw) with
the kernel consisting.of closed (n-2)-forms.
The C®(M)-module b n'2(M) is finitely generated by the forms
® = df \A...Adf o ywhere f,..0,f o€ C(M) .For such an o the
bracket ( , )0‘ defined on C®(M) by (f,g)“ (fot) (g) 1is a Lie
bracket,and since [(fot) ,(gx)"] = ((f,g) o)™~ s the mapping

N P(M) ) f—TF = (f) € I"Q(M)
is a Lie algebra homomorphism,.
It is easy to see that C™(M) with ( »); 1is a general Poisson
algebra for which ad, = O and hence ['yw(M) is a finite sum (non-
direct in general) of quotients of general Poisson algebras.

3. The Kirillov formula for general Poisson algebras.

Suppose that A with the Lie bracket ( , ) is a general Poisson
algebra.Observe that ad1 is a derivation of the associative algeb-
ra A ,since by (2) (1,gh) = (1,g)h + (1,h)g + gh(1,1) and the last
term in the sum equals zero.Denote o = ad1 «It is easy to verify
that for each fe A the mapping D. : AJg—> (£,g) +o((f)geh
is also a derivation of A .Hence the skew-symmetric bilinear
w: AxA—>A given by w(f,g) = Df(g) - f(g). satisfies
(f,g) = wW(f,g) + fo(g) - gt (f) and w(f,*) is a derivation of
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A for each feA . This is exactly the Kirillov form of the Lie bra-
cket for local Lie algebras of one-dimensional bundles.

To see what are the relations between @3 and « ,it is convenient to
introduce some notions. The ideas are in fact well-known and they
can be found in [2] (cf. also [7] ).

Let A be a commutative associative algebra with unit element 1
over a field K of characteristic zero, and let VP(A) s P21, be
the space of all p-linear antisymmetric mappings
o2 AXeee XA—2A , =400
Denote V (4) = 4, V5 (A) = {0} for pL O ,and V(A) =@p OOV (a) .
V(A) with the exterior multipllcation

AP (fypeeesf, 1) =
- a,b, Zses(a+b)sg11(s)ol(fs(1),...fs(a))[$(fs(a+1),...,fs(a+b)) ’

where o(eVa(A) R PeVb(A) , and S(a+b) stands for the symmetric
group, is a graded commutative algebra,i.e. the multiplication

is associative and we have o(AP = (-1)ab/3 AX .

The exterior derivative d : Vp(A)———’Vp”(A) , defined by

k+1 i+ 7
dod(foyenenf ) =5, 4 (F1)TT L ol (£ peensipena,f y)

b+ p+1

satisfies d2 =0 and it is a graded derivation of V(A) of degree

one,since d(o(Ap) = doAp + (-1)2 u/\df; for o¢ Va(A) .
Given o ¢ Va(A) R /z.,eVb(A) , the interior multiplication

P(f1""'fa+b-1) =
5"—(3:—)_ z sGSSgn(S)r’("‘(f (1)?°°° s(a)) fs(a+1)""’fs(a+b-1))

defines a graded derivation iy : V(A)—>V(A) of degree (a-1) ,
Te graded commitator [iy,1p) = g0ty - (- la==1)y
equals i“, » where ([o,p] =1, - (- 1)(a-1)(b—1)i

One can prove that V(A) equipped with the bracket [ ,f becomes a
graded L1e algebra,i.e. [ ° ] is bilinear,graded anticommutative
( [, -(- 1)(a-1)(b-1) [ ,] ),and satisfies the graded Jacobi
identlty [a lp,ﬂ\ = [[d,(b] ¥l + (- 1)(a'1)(b’1)[p i, 1]l
Consider in the space Vp(A) the subspace Der_(A) consisting of
p-linear derivations of A ,i.e. ™¢€ Derp(A) if and only if

ifgo( = (fig + gif)o( for all f,g €A .In particular, Der1(A) is
the space of.deriva’cions of A . P
It is not hard to verify that the space Der*(A) =@p=_ Derp(A)
is a graded commutative subalgebra and a graded Lie subalgebra of
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V(A) .It can be called the Schouten-Nijenhuis algebra of A ,since in
the case A = C®M) one can identify (Der%(A), l,1 ) with the
space of skew-multivector fields with the Schouten-Nijenhuis brack-
et (cf. [9], [10], [12]) .For ae;Der1(A) the mapping Ly = ady is a
graded derivation of V(A) of degree O called the Lie derivative
along « .Note also that for o € Der*(A) we have

(4) igl=0 and i de=o .
The Jacobi identity has a simple expression in terms of the Schouten
-Nijenhuis bracket,namely for CJQVZ(A) we have (cf. [8])

2( w(f,w(g,h)) + w(g,0(h,r)) +w(h,W(f,g))) = [_Q,Q](f,g,h) .
Thus a skew-symmetric bilinear mapping c«w: AXA—> A defines a Lie
bracket in A if and only if [W,w]l =0 .

We showed that for each general Poisson algebra A there are
QJeDerZ(A) and «€Der(A) such that

(f,8) =C..>(f,g) + f“(g) - gu((f) .

In the introduced language fo(g) - go(f) = dl(f,g) ,s0
(, )=+ do and from the Jacobi identity we get|o+dv,w+du]= 0.
One can prove that for cJeDerz(A) and A €Der(A) we have
[de,det] = 0 and [w,dd] = 3o + dlx,w] ,that implies

(5) 0 = [wHdd,o+da] = [0,0] + 6wAY + 2d[«,0] .
But [of,0) , wAW 4 fe,w] € Dery(A} and by (4) and (5)

0 = 11( [wy0] + 6way ) + 211d[«,w] =0 + 2[l,d] .

Hence (5) is equivalent to the system of equalities

[u,w]:L‘(w=o and [w,0] + 6bwAw =0 , ‘
that proves the following.

Theorem, Let A be an associative commutative algebra with unit ele-
ment over a field of characteristic zero.
Then A with the bracket ( , ) is a general Poisson algebra if and
only if (, ) =W+ de for some ¢ Derz(A) , x€ Der(A) satis-
fying the equalities

i) Lyw=0
and

ii) [w,w] + 6wAd=0 .
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