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FORMAL COMPUTATIONS IN LOW-DIMENSIONAL TOPOLOGY: 
LINKS AND GROUP PRESENTATIONS 

MARTIN MARKL 

...%zeI...poklddajt modernt matcmatikovi za jcdno z 
ncjvititch tajemstv<. Je moiny jcn pfi lichim poc~tu 
dimcnzi, ncmoiny na urovni a v prostorcch pdrovych, 
o ityfcch, icsti, dvou dimcnztch, a topologisti stu-
dovali uspeini jcn nejjcdnoduiit u.?/y.* 

Presented to the 11th Winter School "Geometry and Physics", January 1991, Srnx, Czecho­
slovakia, as the last part of the series of three lectures "Formal computations in low-dimensional 
topology" given by B. Berceanu, §t. Papadima and the author. 

The aim of this short note is to show how the deformation theory for the fundamental 
group, developed in [MP], can be used for the computation of the associated graded gr*7Ti of 
the fundamental group of link complements and spaces, associated with group presentations. 

Let us open this introductory paragraph with some remarks on 2-skeletal spaces, where by a 
2-skeletal space is meant a (connected) space 5 satisfying H-3(5; Q) = 0. Let m = dimH1(5; Q) 
and / = dimH 2(5;Q), we always suppose that these dimensions are finite. Let X be an m-
dimensional rational vector space, considered as a graded vector space concentrated in degree 
0. Similarly, let Y be and /-dimensional graded vector space concentrated in degree 1. 

Let L(X, Y) be the free Lie algebra on X © Y. It is naturally graded as L(X, Y) = 
©l->iiJ->o L}(K\ Y), where i = the lenght, and the lower grading is induced from the grading on 
X © Y.~Put L ( X , r ) = n,->i L{(X,Y). This is a graded Lie algebra filtered by FnL(X,Y) = 
{(Ai,A2,...) e L(X,Y); Ai = A2 = ••• = An_i = 0}. Let U denote the group of unipotent 
automorphisms of L(X, Y) and A be the group of automorphisms of the graded vector space 
X © Y. Our first result reads: 

THEOREM 1. The moduli space of models of 2-skeletal spaces 5 having fixed the Betti numbers 
m = dimH J(5; Q) and / = dimH 2(5; Q) can be described as % 

Der^(L(X,Y))/C/ *A 

where Der^(L(X ,y)) = {0 <= Der(L(X,r)); ^(F„Lt(K, Y)) C F n + iL l -- 1 (K ,r)} . 

The proof can be obtained by dualizing the Felix bigraded model, as it is constructed in 
[Fe]. Note that the construction there is carried under the 1-connectivity assumption, but it is 
easy to see that the arguments remain valid also without this restriction. As I was informed by 

L Bergier, L.Pauwels: Jitro kouzelník*, Editions Galiím ar d, Paris 1960, Translation: Jiři Konipck, Praha 1969 



1 2 6 MARTIN MARKL 

§tefan Papadima, there exists a preliminary version of the Felix's paper which does not impose 

the 1-connectivity assumption. 

Suppose that we have chosen a basis y = ( y i , . . . ,y/) of Y and denote by t i , . . . , t j , tt- E 

Lki(X), the "leading terms" of 6(yi), 1 < i < I. Of course, t i , . . . , t / depend on a particular 

choice of y^ 

The following theorem, being a generalization of [MP; Theorem B'], is of a crucial impor­

tance for us. 

THEOREM 2. Let S be represented by a derivation 9 in the orbit space of Theorem 1. Suppose 

that there exists a basis y = ( y i , . . . ,y/) ofY such that the sequence t i , . . . ,t/ of leading terms 

of6(yi),...,Q(yi) is inert in \-(X) (in the sense of [HL; Definition 2.1]). Then 

^ r V 1 5 ® Q S L * ( J T ) / ( t l l . . . , t | ) . 

The most natural examples of 2-skeletal spaces are link complements (in S3) and spaces 

associated with group presentations. We will usually work with links for which an order and 

orientation of components were chosen. As for presentations, we restrict our attention to pre­

sentations of the form {A|.R}, A = { a i , . . . , a m } , R = { r i , . . . , r m } with rt- G [F(A), F(A)] for 

each t, 1 < i < n, where F(A) denotes the free group on A. The last condition means topo-

logically that the CW-complex K{A|fl}» associated with this presentation, is in the normal form 

([FS; page 80]). 

So, let 5 = S3 \ L for an m-component ordered and oriented link, or S = X{A\R} for a 

presentation {A|.R} = { a i , . . . , a m | r i , . . . , r n } as above. Then plainly HX(S) is free Abelian 

of rank m and H2(S) is free Abelian of rank m — 1 (links) or n (presentations), respectively. 

Notice that both H1(S] Q) and H2(S\ Q) always have a preferred basis which is given by the very 

geometrical nature of 5 . In the link case, choose a spanning surface 5,- of the z-th component 

and orient.it compatibly with a given orientation of this component. The duals of Si,...,Sm 

form then a basis of H*(S3 \ L; Q). Next, for each 1 < j < m — 1, choose an oriented segment Ij 

connecting the j-th and (j -f l )- th component. The duals of these segments will then represent 

a basis for H2(S3 \ L; Q). This process can be schematically pictured as 

Im-l 

©̂ 
The existence of a preferred basis for S = X{yi|fl} is clear from the construction - elements of 

A (resp. of R) correspond to oriented 1-cells (resp. 2-cells) of 5 . 

The existence of a distinguished basis in H*(S; Q), S = S3 \ L or S = X{A|rt} > enables one 

to be left in Theorem 1 only with the unipotent part of the automorphism group. 

THEOREM 3. The moduli space of models of spaces S = S3 \ L, where L is an (ordered and 

oriented) m-component link, or S = K{A|R}- where {A\R} = { a i , . . . , am |r*i,. . . , rn} is a group 

presentation with R C [F(A), F(A)], is isomorphic to 

Der^(L(X ,Y))/U, 
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where d imX = m and dim Y = m — 1 (the case of a link) or dim Y" = n (the case of a group 

presentation). 

Notice that the moduli space of the previous theorem, however most unfortunate from the 

geometrical point of view, has the following surprising feature: there exists an inductive (though 

possibly infinite) process of recognizing whether two derivations from Derz 1 (L(X ,y ) ) represent 

the same point of the moduli space or not. 

The results above enable us, as we will see in the next paragraphs, to obtain-on the rational 

level-both [H; theorem on page 57] and [LI; Theorem 1], in a unique fashion. As we have seen 

in [MP; § 5], the integral results are, in some cases, also available. 

Notice also that if the inertia condition of Theorem 2 is satisfied, the Hilbert series of gr*7Ti.S 

is determined only by m = dim(X) and by the degrees ki,..., kj of the elements t i , . . . , ti. 

We close this paragraph with a few comments on the homogeneous case of Theorem 2, 

i.e. on the case when ki = k2 = • • • = k/ = N + 1 for a natural number N > 1. We show 

how in this case the elements t\,..., ti can be computed using the Massey products of order 

N + 1 (= the cup product if N = l ) . This will be of a basic importance in the next paragraphs; 

for links we get from this a formula computing t i , . . . ,tf via Milnor numbers, see Theorem 4 

of the following paragraph. At first, it can be proved, using for "example the computation 

developed in [T ;Chapitre V], that ki > N for all 1 < i < I means the vanishing of all (rational) 

Massey products of order < N. It is then well-known that the Massey product ( , . . . , )/v+i 

of degree N + 1 is uniquely defined on the whole 0 H*(S\ Q), especially, it defines a map 

( , - . . , )iV+i: ®N+1 -^(-S'.Q) -» H2(S,Q) [F; 6.2]. Moreover, we have an identification of 

the space X of Theorem 1 and of the dual of H*(5; Q). Similarly, Y £- the dual of H2(S\ Q). 

So, dualizing the map ( , . . . , )AT+I we obtain a map 12: Y —• ® X. It is also possible 

to show that the map ( , . . . , )N+I is zero on the decomposables of the shuffle product in 

0-V+i Hi($. Q ) which, by the main result of [R], implies that, in fact, Im(fi) C L(X) C ® X.. 

The element ti is then equal (modulo a sign convention) to Q(yi) E L N + 1 ( X ) . Notice also 

that in the homogeneous case the inertia of ti,..., ti does not depend on a particular choice of 

y = (yi>--.itfi)-

1. Link Examples . Let L be an m-component link. It can be shown that the sequence 

( R i , . . . ,Ri) constructed in [H; page 57] using the intersection calculus of a suitable "defining 

system", corresponds to the sequence (ti,..., tt) arising from the representation of S = S3 \ L in 

our moduli space as in Theorem 2 (under a suitable choice of a basis y) . We see that Theorem 2 

together with the characterization of the independence criterion of [LI; Theorem 1] via the 

inertia given in [Al; Theorem 1.5], gives a rational version of [H; theorem on page 57]. The 

integral form can be then obtained using the similar trick as in [MP; § 5]. The following theorem 

relates the ideal (t\,..., U) (where J =- m — 1; we are in the link case), with the Milnor numberB 
structure of the link L. 

THEOREM 4 . Suppose that all Milnor numbers ]i ofL of orders £ N are trivial. For 1 4 * ̂  m - 1 



128 MARTIN MARKL 

denote 
Si = ^^ {p(aIb)xaxjXh -Ji(bIa)xbxjXa} G lN+1(X)i 

a>i>b,I 

where the summation is taken over all (N—l)-tuples I = (t'i,..., I'TV-I ), 1 < ij < m, (z i , . . . , xm) 
is some basis of X and xj abbreviates Xix ® • • • ® XiN_x 6 T^-^X) . Then Si G LN+1(X) c 
JN^(X) and 

gr*(7ri(S3\L))®Q-=L*(K)/(3i,...,5m_i) 

provided &i,..., sm_i is inert in L(X). 

The proof is based on the formula of [P] relating Milnor numbers and Massey products (see 
also [F; 6.4.2] and the results of the previous paragraph. These results enable us to show that 
Si's are "initial terms" for some (in fact canonical) choice of y. 

The vanishing assumption on the Milnor numbers is always satisfied with N = 1. In 
this case the elements (s i , . . . , s m - i ) can be easily computed as d(yi), 1 < i < m — 1, where 
d: Y —> L2(.K) is simply the dual of the cup product multiplication. As it is proved in [L2] (see 
also [MP; Theorem C] the sequence («i , . . . , 3m-i) is inert if and only if the linking diagram D 
of L is connected. 

LINKS OF TWO CIRCLES. The fact that the one-element sequence (si) is inert if and only 
if si ^ 0, together with Theorem 3, gives rise to the following corollary. 

COROLLARY 5. Let L be a two-component link. The group gr*7Ti(S3 \ L) ® Q can be computed 
as follows: 

• If there exists some N > 1 such that all Milnor numbers of order < N are zero, but there 
exists a nonzero Milnor number of order N + 1, then 

gr*7n(S3 \ L) ® Q -* L*(xux2)/(s), 

where 

s = Y^{7l(2i"l);r2.r/.ri — 'p(112)x2xjx1}i 

I 

and the summation is taken over all I = (t' i , . . . , in-i) , ij = 1 or 2. 
• Hall Milnor numbers are zero, then 

gr*7ri(S3\L)®Qi=L*(xi,x2). 

Let us discuss the conclusion of the first part of Corollary 5 for small values of N. 
N = 11 This means exactly that the cup product is nontrivial, /x(12) = /12 (the linking 

number), s = /i2[a?i,^2] and 

grV1(S3.\ L) ® Q = L'(* lf *a)/([* l f *a]). 

rN = 2 { The symmetry properties of Milnor numbers imply that this is impossible, see 

{C; Appendix B]. 
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N = 3 | T h e following tab le shows the only poss ibly nontrivial Mi lnor numbers a n d relations 

among them (see again [C; Appendix B]): 

/J(1122) = 71(2112) = 71(1221) = 71(2211), 77(1212) = 71(2121) = -271(1122). 

Denoting for short 7*(H22) by A, we obtain 

3 = — 2Ax2x\x2x\ +2Ax\x2x\x2 + Ax2x2x\x\ — Ax\X\x2x2 = A[x\,[x2,[x\,x2]]]. 

Therefore gr*7Ti(S3 \ L) <g> Q is always isomorphic with L-*(x\,x2)/([x\,[x2,[x\,x2]]]). 

An example: The Whitehead link: 

LINKS OF THREE CIRCLES. The substantial difference from the previous case of two-

component links is that we must verify the inertia condition for the sequence (31,32), which is 

generally a very difficult task. Nevertheless in some special cases the combinatorial criterion 

[A2; § 3] is applicable. Let us discuss Theorem 4 at least for small values of N. 

N = 11 This is the case of a nontrivial cup product multiplication. The sequence (si,S2) 

is inert if and only if the linking diagram D is connected ([L2],[MP; Theorem C]). There still 

remain unpleasant cases as those having 1 • • as its linking diagram, but even these 

cases can be sometimes managed. 

N = 2 J The only possibly nontrivial Milnor numbers and relations among them are (see 

[C; Appendix B]): 

77(123) = /I(231) = 71(312) = -77(213) = -77(132) = -77(321). 

Denoting!? = 77(123), Theorem4gives: 3i = -B[x\,[x2,xs]], s2 = B[xi, [x\,x2\[. This sequence 

is always inert (see [LI; Example 3] and remember B ^ 0), hence 

gr*7ri(S3 \ L) <g> Q 2 L*(x\,x2,xz)/([x\, [x2,x3]], [x3, [x\,x2]]). 

An example: Borromean rings: 



1 3 0 MARTIN MARKL 

. 2 . Group Presentat ions . Let us open this last paragraph with a brief exposition of the 

main result of [LI]. Let {A|-R} = {a i , . • . , aml ri> • • •>rn} be a group presentation. Let F(A) be 

the free group on A and F(A) = Fi D F2 D . . . its lower central series. Denote rrij = sup{k; r,- £ 

Fib}, the weight of r,-. Let pj denote the image of r;- in grm ' F(A) = Fm. /Fmj+l. Finally, denote 

by J the ideal generated by {p i , . . . , p n } in the Lie algebra gr*F(A) = L * ( a i , . . . , a m ) and let 

G = F(A)/(ri,... , r n ) be the associated group. The main result of [LI] then reads: 

Suppose that 

• gr*F(A)/J is a free Z-module and that 

• J/[J, J] is a free gr*F(A)/J-module via the adjoint action, with the images pj of pj in 

J/[J, J], 1 < j < m, forming a basis. 

Then gr*G = gr*F(A)/J as graded Lie algebras. 

There is a striking resemblance of the Labute's condition as it is formulated above and 

the inertia condition as it is given in [HL; Theorem 3.3]. Anick in [Al] actually proves that 

the Labute's condition is (essentially) equivalent with the inertia of ( p i , . . . , p m ) in the free Lie 

algebra gr*F(A). We aim to explain here what topology lies behind this stunning coincidence. 

Let X = X{>i|fl} be the space associated with our group presentation. Then ^i(X) = G, 

hence gr*7TiK = gr*C? and the whole concept of our "deformation theory for the fundamental 

group" is applicable. The second piece of our mosaic is the fact that the whole information on 

the Massey products in X is contained in the initial terms of the relators, pi,... ,p n , at least 

in the homogeneous case mi = • • • = mn. This enables us to identify (over the rationals) the 

elements pi,...,pn G gr*F(A) and the "initial terms" * i , . . . , *„ G L*(K) * - Q gr*F(A). The 

topological by-pass is now evident. 
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