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T H E C Y C L I C H O M O L O G Y OF P ( G ) 

BOHUMIL C E N K L AND MICHELINE V I G U É - P O I R R I E R 

Let P(G) = © n >oP n (G) be the free associative differential graded algebra, over 
a commutative ring Ky associated with the data of a finitely generated torsion free 
nilpotent group G as in [1]. More precisely P(G) = (T(V),d*), where V is a free 
Z - module, graded in degree one, i.e. V = V " 1 , and d* : T(V)n -+ T ( V ) n + 1 . 
To such a cochain algebra corresponds a negatively graded chain algebra P-* = 
P-*(G) = T(V„) with the differential d+ = d* and V-X = V1. Recall that the 
total Hochschild complex C* of (P-m(G),d+) is negatively graded. By definition 
HHm(P(G),d*) = HH.(P-(G),d.) = H*(C.,d+b) and C. = ©n>0C_n . The 
definition of the Connes boundary B : C-n —• C_n+i can be found in [2] and [3]. 
Thus we have a bicomplex: 

0 •<-?— Co < - — . . . «---— C - B + 1 < - ? — C_n —--— . . . 

1 bH 6 + 4 6+dl 
0 +- Co < — — C-! <—5— . . . « — 5 _ C_n < — — C-n- ! < - " - - . . . 

for n>0 . 
The total complex 

(Tot C)* =0 n >o(Tot C)_ n is negatively graded. We have (Tot C)_ n = C_n 0 
C_n+2 © C_n+4 © • • • .This complex will be denoted by K[U]®BC*, where K[u] is 
the polynomial algebrfy on the generator u of degree —2. The differential is the 
operator b + d + uH. 

Definition. The homology HC*(P*,d*) of the complex (A'[W]®BC*,6 + d + uH), 
is called the cyclic homology of (P(G),d*). 

The homology HC+(P*>d*) is negatively graded. Using the terminology intro
duced by Jones, it is called the negative cyclic homology. Then it is denoted by 
HC;(P-.(G),d.). . 

Let V = V-i = P1(G). Then according to the Theorem 1.5 in [2} 

HH^P-^d.) = H.(P- © P-m ® V, J), 

where 6 = d + 6' + 8",d = d* on P, 6'(a ® v) = ( - l ) H ( a v - ( - l )Ht ;a ) ,8" (a ® v) = 
da ® v — S(a,dv) for a E P,v E V. £' and £" are both zero maps on P,(see [1], 
page 6). When the complex (T(V)yd) is negatively graded, we get similar results 
as thouse stated in [2], Theorem 2.4. Let 

Km = (K[u) ® (P- © P_* ® V), D), 
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where |u| = — 2,D = 0 on K[u], and 

D(un ® (a + bv)) = un ® 6(a + bv) + un+2/?(a) 

when a G P-*, 6 G P.-*, £ G V, and 

P(V\ ...Vp) = Vi... Vp-i ® vp + 

^(_l)[hi+i l+-+I^D[l^l+».+l^|] t , .+ 1 . . . VpVl... v ._ 1 0 „.. 
i = l 

Using the norm || • || on P (see [1], page 3), we define a filtration on the complex 
K* by setting 

Fi = {c = un ® (a + to)|max(||a||, ||6|| + ||v||) < i } . 

It is obvious that the filtration is an ascending filtration J1,- C F»+i. Then from the 
construction of the differential D on K it follows that 

DFi C Fi 

Let {EJr,dr} be the spectral sequence corresponding to the filtration {Fi}. 
Let Fi =F'{ ©F" , where 

F[ = {w ® a G K[u] ® P | ||u> ® a|| < i } , 

F-' = {w ® (6 ® U) G J\r[u] ® (P ® V)| ||u» ® (6 ® U)|| < i}, 

and let p : F[ —• E\* , p" : F" —> E?,p = p +p" : Fi —• E°{ be the projections. 

Next consider the maps d, 6 and 6 (page 5 of [1]) 

d = 1 ® d : K[u] ® P —• Jv [ti] ® P, 

8' = 1 ® 8' : K[u] ® (P ® V) —* IC[tt] ® P, 

8" = 1 ® 6" : Jv [u] ® (P ® V) —> JC[u] ® (P ® V), 

6'" : If [ti] ® P —• tf[ti] ® (P ® V), 

where 

6 (un ® (i;i • • • i;,)) = u n + 1 ® (i;2 • • • vp-X ® i^ 
p - i 

+ ^ ( - l ) c , t ; t + i • • • vpt;i • • • v,-_i ® vj), 
»=i 

e, = (h + i | + ... + K | ) (h | + ... + ̂ | ) . 
Then from ( pages 6 and 7 of [1] ) it follows that on the elements tin ® (a © (6 ® v) G 
K[u] ® (P1 0 (P1 ® V)) of norm equal to i, 

d(un ® a) = - u n ® ̂  a* •* + ••• , 

<$'(i/n ® 6 ® v) = un ® (6v + i;6), 

8"(un®6®F) = - u n ® ] T V •<®v + u n ® 5 ( 6 ^ < •*) + ••• > 

8"'(un®a) = u n + 1 ® a . 

Here • • • stands for the terms of filtration < i — 1. This proves 
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L e m m a 1. Let un ® (a 0 (b ® v)) be an element of P1 0 ( P 1 ® V) of norm i then 

pb(u* ® (a 0 (b ® F))) = p {ua ® (6u + vb - ^ a* • t)} 

+p"{us ® (S(6, v* • t) - ^2 0% ' t ® F ) + w U + 1 ® «}• 

Suppose that the group G, which is the fundamental group of a k- dimensional 
nilmanifold, is a free abelian group. Then a simple verification of the computation 
preceeding Lemma 1 gives 

L e m m a 2. The E1-term of the spectral sequence {Er,dr} is isomorphic to the 
cyclic homology 

HC.(P(H)), 

where H is a free abelian group on k generators. 

L e m m a 3 . If H is a free abelian group on k generators,then the cochain algebra 
(P* = P(H),d*) is quasi-isomorphic to the exterior algebra on the free Z-module 
generated by k elements of degree one, with zero differential. 

Proof. See [1]. 

L e m m a 4. Let K be a commutative ring containing Q, let A( / i , • • • ,fk) be the ex
terior algebra on the K-free module 0*_i-K/i, with \fi\ = —1, and let K[ei, • • • , e*] 
be the polynomial algebra on the K-free module ®i=1Kei with |e;| = 0. Then , 

#crn(A(/i,.../o,d^^ 

for n > 0; P is the algebra derivation defined by fi(fi) = e,, ^(e,) = 0, and 
A ^ / i , - • • fk) denotes the K-vector space generated by words of length i in the 
variables f\, • • • , fk. 

Remark. Since HCZn(K) = K for n even and HCZn = 0 for n odd, it follows that 
for n > k, .ffC_n(A(/i, • • • ,fk)) = 0 for n odd and HC_n(A(/i, • • • ,fk)) = K for 
n even. 

Proof of Lemma 4- A modification of the proof of the Theorem 2.4 in [3] shows 
that the map 

e:(C.,b,B)->(A(fi)®K[ei],0,p), 

(_ l )M -0 
6(a0 ® ai ® • • • ® ap) = ±—^ a0/?(ai) • • • p(ap) 

if ao £ A(/i),a,- G A + ( / , ) , 1 < i < p satisfies 
1 . 0ob = 0,0oB = 000, 
2 . H.(C.,b) = A(fi)®K[ei], 
3 . HC*(C.,b,B) = HC*(A(fi)®K[ei],0,p). Here HC*(A(fi)®K[a\,0,p) is the 

homology of the complex Lm = 0 n >oL_ n , 

L_ n = (A(/i) ® A'[ei])_n 0 (A(/i) 0 K[a])-n+2 0 • - • 
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with differential /?L, 

pL(a-ny a_n + 2 , • • •) = (0, p(a-n\ /?(a_n + 2) , • • • ) . 

Since H*(A(/j) <£) Kfe,],/?) is equal to zero in non-zero degrees, and is equal to 
K in degree zero, it follows that 

#_„(_..) = I 
© 0(An+1(fi)) • K[ei] if n is even, 

0(An + 1 ( / , ) ) - -K [e , ] i f n i s odd 

Summarizing our results we get 

Theorem. Let G be a finitely generated torsion free nilpotent group, and let 
k = dimK(G, 1). Let P(G) be the polynomial cochain algebra of G endowed with 
the norm || • || as defined in [1]. Let K be a commutative ring containing the 
rationals. Then the norm \\ • || induces titrations on the Hochschild and Connes 
complexes such that 
1 . There is a spectral sequence Er

v _q converging to HH-*(P-m(G)) with the 
El-term isomorphic to HH_*(P_*(H)), where H is the free abelian group on k 
generators. In fact 

© El_q = HH-n{P-m{H))~An(fir..Jk)®K[eu...ek], 
p-q=n 

where A'[ci,• • • e*] is the polynomial algebra on k generators in degree 0, and 
A n ( / i , • • • , /* ) is the vector space spanned by words of length n in the exterior 
algebra on the K-free module generated by k generators in degree one. 

2 . There is a spectral sequence cEpt-q converging to HCZ*(P-*(G)) with CEX-
term isomorphic to HCZn(P-n(H)). We have 

e ^ c-35,-. = HCZn(P-n(H)) = HCZn{K) 9 Vn 
p-q=n>0 

with 
a ) HCZn(K) = 0 if n is odd, and HCZn(K) = K ifn is even, 
b )Vn = 0ifn>k, 
c ) if n < k, then Vn is the K[e\,-— ,ejfc]-i__oa!u_e generated by elements of the 

form . 

n+l 
^ ( - l ) J " 1 e . ; a , e j 1 A • • • A deij^ A deij+l A • • • A dein+l 

>=i 

for all {i\ < %2 < • • • < tn+i} € [-,••• yk]. dei stands for the. differential form of 
the i-th variable c,- of the polynomial algebra K[e\,' • • e*]. 
3 . If K is of characteristic zero, then the Connes long exact sequence 

• • • —• HCZn+2 ~* HC-n —• HH-n —> HC_In+i —• • • • 
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induces the short exact sequences: 

0 —^ HCZn(P-.(H))/HCZn(K)) • HH-n(P-.(H)) 

"I =1 
0 • Kern (A?(/.) •._"[_.]) > A"(fi,—,fk)QK[eu---ek] 

> HCZn+1(P-.(H))/HCZn+1(K) , 0 

---> ß[^n(Ju—Jk)]-K[eu-,ek] • 0 

for n > 1. 

C o r o l l a r y . Let G be a £nitely generated torsion free nilpotent group and let k = 
dimK(Gy 1). Let P(G) be the cochain algebra of G with coefficients in a field of 
zero characteristic. Then 
1 . HH-n(P—(G)) = 0 if n > ky 

*** ** 
2 . HCZn(P-*(G)) = 0 if n > k, and where HC is the quotient of the cyclic 

homology of P-* over the cyclic homology of the ground field. 
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