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FINITE GROUP ACTIONS ON S-DIMENSIONAL CW-COMPLEXES. 

Wojciєch Dorabiala
1 

The main purpose of this paper is an investigation of a 
finite group action on S-dimensional CW-complexes. 
More exactly let 

X = (S\, S\, ^ S
1
) u e

2 

f 
be a S-dimensional CW-complex obtained by attaching S-cell to 
the finite bouquet of circles. We shall call a CW-complex of 
this form a ju-complex. For example any compact connected S-
dimensional manifold is a ^-complex. 
The conditions under which such a /^-complex is the Eilenberg-
MacLane space of type K(G,1) are well known, see C-+D. The 
question whether the finite covering of a jj-complex is itself 
a /i-complex has also been investigated, see C63. 

In this work we try to answer the following questions: 
(1) Does a finite group G can act freely on a /j-complex, 
O ) Does the orbit space of a given action on the ju-complex 

is itself a ju-complex. 

It turns out that a finite group G can act freely on the 
/^-complex X in the following three cases: 

<a) X is a closed .surface. 
(b) X is a surface with boundary and the boundary has 

one component 

(c) when the S-cell e
2
 is attached to one of the circles 

of the bouquet more than twice. 
In these cases the answer to the second question (S) is 
affirmative. 

1
 this paper is in final form and no version of it will be 
submitted for publication elsewhere. 
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1.Actions on the E-dimensional sphere and disk 

In this section we recall some known facts about 

effective actions of a finite group Gon ^the sphere S2 and 

the disk D2. Of course S2 and D2 are /j-complexes. 

Definition 1 Let the group 

G = Z e D -= •Ca-.b-.c :a 2 -b 2 n
?c 2 ,aca" 1c"" 1

J ,bcb" 1c" 1
#abab.> 

act effectively on S1 x D1 by 

T (t-y) = (i-t-y>- T (t-y> = (t+--y> -T (t-y) = (t--y). 
<x o n e 

We quote from [53 the 

THEOREM 1.1 Any effective action of a finite group on 

S1 x D1 is conjugated with (a subgroup of) the 
transformation group G given above. 

In the same paper C53 one can find the following. 

THEOREM 1.8 Any effective action of a finite abelian group 

G on S2 is an extension of some action on S1 x D1. 

From these theorems we infer 

Corollary. The orbit space of the effective action of a 

•finite-? group G on S is homeomorphic to one of the fHawing 
spaces! 

(1) the projective space RP2 

(S) the S-dimensional disk D2 

(3) the S-dimensional sphere S 

thus the orbit space in all above cases is (up to homeomor-
p h ism) a /j-c amp lex. 

THEOREM 1.3 C33 Any periodic hameomarphism of the S-
dimensianal disk is (conjugated to) a rotation or a refle­
ction -

Corollary, (of theorem 1.3) 

The orbit space of an effective action of a finite 
abelian group on S-dimensional disk is homeomorphic to the 
S-disk. 
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2. The free action of a finite group 

In this section we shall present some necessary 
conditions under which a finite group can act freely on a /Li-
complex. 

Comparing the Euler characteristics of the space X and 
the orbit space X/Q one gets the following. 

LEMMA 2.1 Let X be the complex obtained by attaching a 
2-dimensional cell to the circle, X = sSjfe2. Then there 
does not exist the free action of a non-trivial finite group 
G on the complex X. 

Now we consider the case when the 2-cell of the complex 
X is attached to all circles of the bouquet. Then a finite 
group G can act freely an the complex X. 

LEMMA 2.2 Let X be a /i-complex of the form X = X * >, V s 1 

i=i i 

where X"c X is the subcomplex of X such that the 2-cell e 2 

is contained in X". Then there does not exist the free 
action of any finite group G on the complex X. 

Proof sLet gsX »X be a homeomorphism. Considering aneigh--
k 

borhood of points x e X and x e V s 1 i t i s n o t difficult 
i = i i 

t o prove t h a t g ( X % ) =X * and g < V s 1 ) ." V s 1 - Hence V s 1 

i = l *• iai *• issl *• 

is G-equivariant subcomplex of X for any action of group G. 
k 

The free action of G on X gives us the free action on V s 1 

i=i.> 
k k ' 

Now let f: V s 1 • V s 1 b e t h e homeomorphism and x be 
i = i *• i = i .*• 

the vertex of the bouquet. 
Thus 

f: V S* \ <x > . > V S1 \ ťf(x » 
1=1 

is the homeomorphism and induces the isomorphism on 
fundamental groups. 
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П V s
1 

íx î 
o -> П V s

1 
\ -Cf<x

0
)> 

-> П V S
1
 \ {f<x

0
)J 

x 

* 0 

We infer that any This is valid for k > 1 when f<x ) 

o 

homeomorphism of a bouquet of circles fixes the vertex of 

this bouquet. This implies that there does not exist a free 
k 

action on X = X * v ^ s
1
 for k > i. In order to finish the 

isi *-

proof of the lemma it is enough to consider the case 

X = X* v S
1
. Using the same type of argument as above we can 

show that the vertex of the bouquet X' v> S
1
 is fixed by any 

homeomorphism. 

Corollary <of lemma 2.2) 

The group G can act freely on the complex X when X is 
obtained by attaching 2-cell to all circles of the bouquet. 

In order to formulate further results we need the 
following. 

Definition 

. Let X be the /Li-complex with the fundamental group 
n <X) = < x ,x ,x .. . . x : r > where r = f < 1). We denote by 
I i 2 a' n *

 7 

X
x
. <r) the sum of absolute values of exponents occurring at 

x. in the relation r. 

E x a m p l e 

<a) r = x S c ' W V 8 t h e n \ x < r ) = 8 - \ x < r ) = 5 - X x < r ) = -+ 
l a i 2 a x a x i x 2 

<b) i f X i s a c l o s e d s u r f a c e t h e n \ v < r ) = 2 f o r a n y i . 

THEOREM 2 . 3 l e t X b e a ^ - c o m p l e x s u c h t h a t \ x < r ) > 2 f o r a t 

l e a s t t w o g e n e r a t o r s x.. Then a n y homeomorphism f : X • 3 

has a f i x e d p o i n t . 
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Proof: Here, for convenience, we will consider the complex 

X as the quotient space of a polygon where the relation is 
given by r = f < 1 > on the boundary of the polygon.The 

assumption Xx (r) > S means that the side xt occurs in the 

boundary of the polygon more than twice. Let f sX • X be a 
homeomorphism and let xk be another side of the boundary for 
which X̂ , (r) > 2. xk 

Our aim is to prove that any paint of the side xk via 

the homeomorphism f is mapped into the side xL or xk for 

which A,x.(r) > 2. In order to prove this we consider the 

point b € xk different from the point a- the vertex of the 

bouquet. Let us assume that f(b) e e . Then there exists an 
°2 

open neighborhood U of f(b) homeomorphic to D . Since 
f"1- u. • f(U) is a homeomorphism we see that f(U) is the 
neighborhood of the point b. This is a contradiction with 

°2 
the fact that b has a neighborhood homeomorphic to D . To 
finish the proof we have to consider the vertex of the 
bouquet. In this case it is enough to assume that x occurs 
at least tree times in the boundary of a polygon. Then .a 
neighborhood of the point a will contain the identification 
of three parts of a disc with respect to the common edge. 

Hence the vertex a does not have a neighborhood homeomorphic 
°2 

to D . What we have proved above' imply that any 
homeomorphism f:X '•—• X preserves the bouquet of the 
circles obtained from • xk and "x^ Now because any 
homeomorphism f restricted to a bouquet of circles has a 
fixed point (this* has been proven in lemma 2.2) one can 
see that the homeomorphism f on X has a fixed point too. 

THEOREM 2.4 Let X be the fi-complex such that \_ (r) = 1 for 
i 

a t l e a s t two genera tors x. .whereas \ „ , ( r ) = 2 fo r o t h e r s . 
i xk 

Then any homeomorphism fsX * X has a fixed point. 
Proof: The proof of this theorem is similar to the previous 
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Corollary (of theorem 2.3 and 2.-t) 

The group G can act freely on the complex X only in the 
following cases : 

(1). if Xx. (r) = 2 for i = l,2,3...,n, 

(2) if \„ (r) = m > 2 for exactly one k and \„ (r) = 2 xk xt 

otherwise, 

otherwise. 

(3) if \„ (r) = 1 for exactly one k and \v (r> = 2 xk xi 

LEMMA 2.5 Let Xx. (r) = 2 for i = l,...-n. Assume that there 

exists a homeomorphism f:X — • X without fixed points.Then X 
is a sur.face and 

2 2 2 2 r = x x x . . . x or r = C x , x 3 C x , x 3 . . . C x ,x 3 . 
1 2 3 n 1 2 3 4 n-1 n 

Proof: It is not . difficult to verify that for any point b 

different from the vertex a of the bouquet there exists a 
°2 

neighborhood of b homeomorphic to D . This follows easily 
from the fact that \x. (r) = 2 for any i = 1,2...-n. 

Let us assume that there does not exist a neighborhood 
°2 

of a homeomorphic to D . Let b = f(a) and b s* a. We know 
°2 

that there exists the neighborhood U of b homeomorphic to D . 
Since f is a homeomorphism, fs f^dJ) • U is also a 
homeomorphism and f^dJ) is the neighborhood of the point b. 
This is a contradiction. Thus we have f(a) = a. But this 
contradicts the assumption that f does not have a fixed 
point.This completes the proof of the lemma. 

LEMMA 2.6 Let X__ (r) = 1 for exactly one k and \„ (r) = 2 xk xt 

otherwise. Assume further that there exist a homeomorphism 
fs X • X without fixed points. Then the complex X is a 
surface with one-component boundary. 

Proofs The proof of this lemma is similar to the preceding 

one. 

3.The orbit space of complex X. 

In the previous chapter we gave the profound answer to 
the question when a group G can act freely on the ^-complex X 
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We now turn our attention to the question when the orbit 
space X/

G
 of any action on the /Li-complex is also the /LT-

-complex. 

First we prove the following theorem. 

THEOREM 3.1 If a finite abelian group G acts on the complex 

k 
X = X

%
 s/ y/s

1
 such that X

x
. (r) .- S for i=l ,2,3- . . . ,n then 

i=i * v 

the orbit space of this action is (up to homotopy type) a /i-
-complex. 

Proof: To get a clearer view of the complex X, as in chapter 

2 we consider the complex X as a quotient space of the 
polygon. The relation on the boundary of polygon is given by 
r. According to what was said in the first chapter the orbit 
space of any action of a group G on a 2-disk is homeomorphic 
to 2-disk. Moreover, the orbit space of any action of a 

k 
group on the bouquet of the circles X/s

1
 is itself homoto-

i=i
 i 

py equivalent to the bouquet of circles. The assumption 
X
x
. (r) # 2 for any i = 1,2,3,. ..,n guarantees that the 

boundary of the polygon is G-invariant. Let us consider the 
action of a group G on the circle. An importent action on 
the circle is the reflection. 

Consider the complex X in this case . Assume that G acts on 
one circle as it is shown on the picture 2, then we get the 
situation depicted in picture 3. 

I* 

Уc 
But the complex Y^ on the picture -+ is homotopy equivalent to 
X̂  in which the side ab is contracted to a point. Now the 
proof goes by series of contractions which reduce the 
complex Xj to -the complex 5̂* with one 2-cell. In view of the 
previous reduction we considered the case when the complex X 
has no free circles. But when X has " free " circles then 

k 
X/„ = X

%
/- v V/c

1
/5o that we may indeed take into account X (/„ = X

%
/p v Nys

1
/""*

0
 that we may indeed take 

i-s± V(Z 
without " free " circles. 
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THEOREM 3.S If the finite abelian group G acts effectively on 
the surface then the orbit space of this action is also a 
surface. 

This, theorem is the classical fact already known, see C73 

THEOREM 3.3 If a finite abelian group G acts freely on the 
complex X such that \x. <r) satisfy conditions <1) and <3) 

from page 6 then the orbit space of this action is 
homeomorphic to a /j-complex. 

Proof: The proof of this theorem is a consequence of the 

theorems proved in this chapter. 

-4.The free action which induce the trivial action on 
cohomology. 

In the ' previous parts of the paper all the results were 
obtained by geometric methods. In what follows we shall use 
algebraic methods and consider the free action of a group G 
on the complex,inducing the trivial action on cohomology. 
The assumption that the group G acts triviality on the 
cohomology allows us to compute cohomology groups of the 
orbit space X/-. 

For the finite group G we have the isomorphism 

H*<X,Q)G 3S H*<X/G,<D) seed]. 

Because the action on cohomology is trivial we have 

H*<X/G,<D> 25 H*<X,<D>. 

LEMMA 4.1' If n = 2 then there does not exist a free action of 
k 

a finite nontrivial group G on the complex X = X * v W g 1 

= i *• 

which induces a trivial action on cohomology. 

Proofs Previous remarks give us the equalities for Euler 

characteristics: 

*<X) = ^ < X/ G
) a n d * ( X > = 2 - n. 

As far as the action on X is free and |G| <CO one obtains 

*<x> s=:
 [GI X < X/ G>

 =S ||G| 2<X)- Dividing both . sides of the 

equality by #<X) * 0 we obtain |G| = 1 which means that G is 

trivial. 
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The next theorem gives the answer to the question when 
the trivial• action on X induces the trivial action on 
cohomalogy. 
Before we formulate the theorem we will need some more 
information about the cohomalogy of a '/Lr-complex. 

Definition Let r be an element of the free group generated by 

x x . We denote by 6V. (r) the sum of exponents at 
n xt 

x. occurring in the element r. For the ^-complex X we define 

the number d 

Then we have 

= d(X) = g.c.d. (<5x(r)- 6y (r),, 
* xl x 2 * 

ôx (Г) ) . x
n 

H
l
(X-Z) = z

n 

z 

for 

for 
for 

i=0 

i=l 
i=S 

f
 if óv (r )=0 for every i 

XL 

Hl(X-Z> 

for 

for 
for 

i=0 

i=l 
i=Є 

if <5„. (r )i*0 for every i 
x
t 

THEOREM -••£ Assume that a finite group G of order m acts on 

the complex X = (S *v S1) ufe
2. Let m be an integer 

satisfying the conditionsg.c .d(m-S)=g.c .d(m.,3)=g.c .d (m,d ) = 1. 
Then the induced action, on cohomology is trivia.l. 

Proof: We have two•possibilities for the cohomology group of 

the complex X. 

( 1 ) HNX-Z) 

and 

< e ) Hl(X-Z) 

{ 

i Ф Z 

for i = 0 
for i = 1 
for i = S 

for i = 0 
for i = 1 
f or i = Є 
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When the cohomology group is a cyclic group then the action 
on cohomology is given by multiplication by an integer a 

such that am=l. The assumption g.c.d(m,e) = g.c.d(m-3) = 
•-•= g.c.d(m-d) = 1. implies a = 1. 

In order to show the triviality of the action on the 
first cohomology group in the second case it is enough to 
consider the commutative diagram. 

G 2 „ GL(e-Z) 

GL<e,Z ) 

where p is induced by the canonical homomorphism Z • Z 

and a represents the action of a group G on H*(X,Z) = Z e Z. 

Now because g.c.d.( 11(3II - II GL(e,Z9 | )-we have that any 

homomorphism. * s G > GL(e,Zg) is trivial. Applying the 

Minkowski theorem which says that a(G) n ker/?--<.l.} and the 
fact that <p is trivial we obtain the triviality of a. 
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