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0. Introduction. 

In this paper we collect properties of product preserving functors. A product 

preserving functor is a covariant functor T from the category of manifolds into the 

category of fibered manifolds such that T{M\ x M<i) is equivalent to T{M\) x T{Mi). 

The tangent bundle, the tangent bundle of pr-velocities are well-known examples of 

product preserving functors. The most important and general examples of product 

preserving functors are so-called Weil functors. 

Let R[p] = R[[-Xi, ...,XP]] be the algebra of all formal power series of p indeter-

minates Xi,...,Xp and let a be an ideal of R[p] such that dimR[p]/a < oo. The 

algebra A = R[p]/a defines a product preserving functor TA called Weil functor. If 

M i s a manifold, then TAM is the set of equivalence classes of smooth mappings 

Rp —> M, where y?, <p!: W —» M are equivalent if and only if for every smooth func

tion / : M —> R the formal Taylor series at 0 of / o <p and f o<p' are equal modulo 

a. 
G. Kainz, P. Michor [6], 0 . 0 . Luciano [11] and D. J. Eck [2] have given char

acterization of product preserving functors (see also [9]). Namely, they have proved 

°) This paper is in final form and no versionof it will be submitted for publication elsewhere. 
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that any product preserving functor T is equivalent to TA with some algebra A. It 

is an answer for the Morimoto's conjecture [13]. 

Usually properties of product preserving functors are proved as follows: firstly 

they are proved for Weil functors of type TA and next they are extended to an arbi

trary product preserving functor using the classification theorem of Kainz, Michor, 

Luciano and Eck. In this paper we will prove all presented properties of product 

preserving functor T directly from the functoriality of T. 

We suppose always that all manifolds, mappings, vector fields and so on are of 

class C°°. 

1. Weil algebra associated with a product preserving functor-

First we recall the definition. 

A product preserving functor is a covariant functor T from the category of all 

manifolds and all smooth mappings into the category of fibered manifolds satisfying 

the following conditions: 

(1) For every manifold M, the space T(M) is a fibered manifold over M with 

a projection ir = KM : TM —> M. For a point x € M we denote by 

TX(M) = ^"M(X) the fibre over x. 

(2) The naturality condition. For every mapping tp : M —* N of two mani

folds M, JV, for the induced mapping T(ip) : T(M) —• F(N) the following 

diagram 

F(M) > F(N) 

*"[ lw" 
M -^—* N 

commutes. 

(3) If (p : M -H• JV is an embedding, where dimM = dimN, then for every x € 

M the restriction «>r(^)|̂ -,(M) : Fx(M) —• «^(x)(-V) is a diffeomorphism. 

c1) 
(4) The regularity condition. If <pt : M -» N is a differentiable family of map

pings, then Pfot) : F(M) —> F(N) is a differentiable family of mappings. 

(5) For two manifolds Mi,M2, if TTJ : M\ x Mi -» Mi denotes the standard 

1) This condition is equivalent to so-called the locality condition saying: if v?i> V?2 : M —• 1V are 
two smooth mappings such that (p\\U = <pz\U for an open subset U C M, then -^(^i)|^1(^) = 
nv*)\*£(v). 
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projection on the t'-th factor, where i = 1,2, then the mapping 

( ^ i ) , ^ ( 7 r 2 ) ) : T{Mi x M2) —• T{MX) x T{M2) 

is a diffeomorphism. 

I. Kolaf and J. Slovak have proved that the regularity condition is a consequence 

of conditions (1) and (2) of the definition (see [10]). Let us observe that for every 

fixed natural number n the restriction of a product preserving functor to the category 

of n-dimensional manifolds and their embeddings is a natural bundle (see [16]). 

The definition immediately implies: 

(1) if U C M is an open subset then we can identify T{U) with T{M)\u by 
T{i) : T{U) —> T{M)\UJ where t: U -+ M is the inclusion; 

(2) T{Rn) is isomorphic with the trivial bundle Rn x F, where F = T0{R
n). 

The isomorphism * : Rn x F -> T{Rn) is given by V{x,y) = T{rx){y), 

where rx : Rn —• Rn is the translation. 
(3) every product preserving functor transforms immersions, submersions and 

embeddings into immersions, submersions and embeddings respectively (see 

[io]). 
To see (3) we observe that / : M —* N is a submersion (respectively an immersion) 

if and only if for any point x € N (respectively x € M) there exists J : N -H• M 

(respectively J : M —> N) such that f o J = id (respectively J o f = id) on 
some neighborhood U of x. By the functoriality of T we obtain T(f) o T{J) = id 

(respectively T{J) o T{f) = id) over U. 

For a product preserving functor T we will always identify T(M\ x M2) with 
T{M\) x T{M2) by the diffeomorphism from the definition. After this identification 
we have 

(1-1) .^(/ix/2) = .F(/1)x^(/2) 

(i-2) mg) = (Hf),H9)) 

for all mappings f\:Mi-* N\, f2:M2-> N2, f : M—• N\ and g : M —> N2. 

From the definition we obtain that a product preserving functor T has the point-

property, i.e. ^"(point) = point. This implies that for a constant mapping <p : M —i• 
N the induced mapping T{<p) is also constant. 

The tangent bundle TM and the tangent bundle of pr-velocities T£M = JS{RP, M) 

(see [13], [14]) are important examples of product preserving functors. The most ge
neral examples of product preserving functors are so-called Weil functors (see [15]). 
We give some remarks on these functors on the end of the section. At first we prove: 
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PROPOSITION 1.1. If T is a product preserving functor then A = T(R) is a real, 

associative, commutative and finite dimensional algebra. 

If +, •: R2 -* R are the addition and the multiplication on R and ma : R —• R is 

the multiplication by a G R, then T(+), T(m), T(ma) are the operations in A, T(0) 

and T(l) are the zero and the unity in A (2). 

The set N = TQ(R) is the ideal ofnilpotent elements of A. We have A = R-1®N. 

PROOF: A = T(R) is an algebra by the functoriality of T. For instance, to show 

the associativity of T(+) we apply T to the formula + o (+ x id) = + o (id x +). 

To prove the properties of N we observe that the restriction of T to the category 

of 1-dimensional manifolds is a natural bundle, and by [17] it is of finite order h. Let 

q(t) =t +1&+1. Since jftq = jftid, thus for a G N we have 

a + ah+l=TQ(q)(a)=a. 

It implies afc+1 = 0. • 

The algebra A = T(R) constructed in Proposition 1.1 is called Weil algebra of a 
product preserving functor T. 

Let us observe that natural transformations of product preserving functors are 
determined by their values on their Weil algebras. We recall that for two product 
preserving functors T,G & natural transformation of T into G is a family of smooth 
mappings \PM : f(M) —• G(M) such that the following diagram 

T(M) - ^ Q(M) 

M - ^ - * M 

commutes and for each smooth mapping / : M —• N the diagram 

Hf) 
T(M) U T(N) 

(!-3) *jfj J** 

G(M) -?^-+ G(N) 

also commutes. We can prove the following proposition: 

2 ) We always identify constant mappings with their values. 
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PROPOSITION 1.2. Let T,Q be two product preserving functors and let A = T(R) 

and B = Q(R) be their Weil algebras. 

If ^ = { * M } is a natural transformation of T into Q, then *JR : A —i• B is a 

homomorphism of algebras. 

If * = { * M } and * ' = { * M } a r e *wo naturai transformations of T into Q such 

that * K = * i , then * = *'. 

If ^ : A —> 2? is a homomorphism of algebras, then there is one and only one 

natural transformation ^ = { ^ M } of «̂  into Q such that \£]R = ^. 

If \P = { ^ M } is a natural transformation of T into Q such that ^R : A —* B 

is an isomorphism (respectively a monomorphism, an epimorphism), then for each 

manifold M the mapping ^M is a diffeomorphism (respectively an embedding, a 

surjective submersion). 

PROOF: Let * = {\PM} be a natural transformation. 

At first we observe that from (1.3) applying to the natural projections TT\ : M\ x 

M2 -* M\ and ir2 : Mi x M2 —> M2 we obtain 

(^(wO-^fo)) 
T(Mi x M2) » T(Mi) x T(M2) 

(0(iri).0(ir2)) 

Q(Mi x M2) Q(Mi) x Q(M2) 

It means that after the identification T(Mi xM2) with T(Mi) x T(M2) we have 

(1 .4 ) * M - xM2 = ^Af- x tf M a • 

Now from (1.4) and (1.3) applying to + : R x R -> R and • : R x R —> R we 

obtain the commutative diagrams 

*Ҷ+) 
AxA —-—+ A AxA •^UA 

ФRXФRІ ІФR ФRXФRІ ï-
0(+) 

' ÐxB • B ÐxÐ • в 

Ф R 

which means that $ R is a homomorphism of algebras. 

If ^ = {^M} and * ' = {V'M} are two natural transformation of T into Q such 

that *BL = * i , then by (1.4) we have V^n = tyRn. Using an atlas on M we deduce 

that * M = * M ^ o r eajcn manifold M, 
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Let %l> : A —• B be a homomorphism of algebras. According to the previous part 
it is sufficient to show the existence of a natural transformation $ = { ^ M } such 
that *IE = ij). 

We set $]&-» = \j) x .. • x 0 (n times). Next we verify that the diagram (1.3) 
commutes for every mapping / : Rn —• Rm. To see this without loss of generality 
we suppose m = 1. Since T is locally of a finite order (see [12]) we can assume that 
/ is a polynomial f(x) = £ aa-Ca, x € Rn. Then according to the definitions of the 
operations in A an B we deduce that T(f) : An —• A is given by -F(/)(a?) = ]C aaxa 

and G(f) : Bn —• B by G(f)(x) = S 0 *^ 0 * Since ^ is an algebra homomorphism, 
then xj> oF(f) = G(f) o (0 x .-• x 0). 

Now using an atlas we define \PA/ for every manifold M such that the diagram 
(1.3) commutes. 

If <j> = \I>ifi is an isomorphism, then this construction implies that \I>M is a difFeo-
morphism for each M. D 

Now we consider an algebra A = R • 1 0 JV, where N is an ideal of nilpotent 
elements. We can construct a product preserving functor such that its Weil algebra 
is isomorphic to A. In order of this we use a result of Weil [19] which says that for 
some natural number p, the algebra A is isomorphic with an algebra constructed as 
follows. 

Let R[p] = R[[-Xi,..., Xp]] be the algebra of all formal power series of p indetermi-
nates X\,..., Xp and let nip be the maximal ideal of R[p] containing all formal power 
series without constant terms. Let a be an ideal of R[p] such that dimR[p]/a < oo. 
The algebra A = K\p]/a has the unique maximal ideal m = mp/a. 

We construct a product preserving functor TA. 

Let f A : R[p] -* A be the natural projection. We denote by r : C°°(RP) - • R[p] 
the formal Taylor expansion at the origin t = 0, i.e. for / € C°°(RP) we have 

<f)=Ekír^x 
V 

Now we define an equivalence relation in the set C°°(RP, M) of smooth mappings 
W —• M (similar to the relation of jets) as follows: 7,7': R' —> M are ^-equivalent 
if 

W r ( / 0 7 ) ) = W H / » y ) ) 

for every / € C°°(M). We denote by jAy the equivalence class of 7 : Rp —• M, by 

TAM the set of all equivalence classes and by TTA - TAM —* M the natural projection 

M i A 7 ) = 7(0). 
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For a smooth mapping <p: M -+ N we define TA<p : TAM —• TAN by 

TAip(jAi)=jA(<poi). 

If (U, <p) is a chart on M, then (TAU, TA<p) is a chart on TAM. It is easy to observe 

that TA is a product preserving functor. 

In 1986 Eck [2], Kainz, Michor [6] and Luciano [11] have proved independently 

that any product preserving functor is in fact equivalent to some Weil functor. 

THEOREM 1.3. If T is a product preserving functor, tben tbere is an algebra A = 

R[p]/a such tbat F(M) = TA(M) for every manifold M. 

In the paper we do not use the above theorem. 

2. Product preserving functors and algebraic structures. 

Product preserving functors have many interesting properties. In this section we 

transform manifolds with some algebraic structures as groups, vector spaces, algebras 

and so on by a product preserving functor. 

We start from vector spaces. We have 

PROPOSITION 2.1. Let T be a product preserving functor and let A = ,F(R) be its 

Weil algebra. 

If V is a finite dimensional vector space, tben T(V) is a Unite dimensional vector 

space. If + : V x V -* V is tbe sum mapping in V and da : V —• V is tbe 

multiplication by a scalar a € R, tben P(+) : F(V) x f(V) -* F(V) is tbe sum 

mapping in F(V) and T(da) : T(V) - • F(V) is tbe multiplication by a in F(V). 

The zero ofT(y) is T(jS), where 0 : V —• V is tbe constant zero mapping. 

If V is a finite dimensional vector space, tben F(V) is an A-module. Ifm:Rx 

V —• V is tbe multiplication, tben tbe induced mapping ^(rn) : A x !F(V) —• T(V) 

defines the action of A on F(V). 

Hvi,...,vnisa basis of a vector space V, tben T(vi),..., F(vn) is a basis of the 

A-module F(V). Furthermore, ifa\,..., OK is a basis o;f.A over R, then all products 

ayftyi), where i = 1 , . . . , n and v = 1 , . . . , K, form a basis off(V) over R. 

PROOF: Exactly as in the proof of Proposition 1.1 we verify that F(V) is a vector 

space and an A-module. 

To show the last part of our proposition we apply T to the linear isomorphism 

n 

/:R"9(<i *„)--> X>.t;.eV. 
i= l 
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We obtain a diffeomorphism T(f) : An —• F(V). According to the definition of 

A-module structure on F(V) it is given by 

n 

r(f)(x1,..., xn) = J2 xiHvi) • 

Hence F(vi),... ,F(vn) is a basis of A-module F(V). Since the multiplication by 

scalars on F(V) is the restriction of the action of A on T{V), where R is contained 

.in A via the inclusion R 9 t - * t - l € A = R-l + iV, thus avF(vi\ where i = 1 , . . . , n 

and v = 1 , . . . , K, form a basis of T{V) over R. • 

If V is a vector space then F{V) is always considered as a vector space or as 
A-module with the structures defined in Proposition 2.1. For induced mappings by 
linear mappings we have 

PROPOSITION 2.2. Let J7 be a product preserving functor and let A = ^"(R) be its 
Weil algebra. 

If f : V —• W is a linear mapping of two finite dimensional vector spaces, then 

P(f) : ?(v) -* F(W) is dso linear over A and over R. 

If f : Vi x • • • x Vk -> W is a k-linearmapping, then T(f) : F(V\) x • • • x F(Vh) -> 
T( W) is also k-linear over A and over R. 

PROOF: Let m : R x V —• V be the multiplication by scalars and let + : V x V be 
the sum in V. The linearity of / means that we have / o m = m o (ia\ x / ) and 

/ o + = + o ( / x / ) . This implies that 

T(f) o F(m) = T(m) o (idA x T(f)) 

r(f)°H+) = H+)o(Hf)xr(f)), 

i.e. F(f) is linear over A and in consequence, linear over R. 
Analogously we verify the second part of the proposition. • 

Next we prove properties of direct sums as well as kernels and images of induced 

mappings. Namely, we have 

PROPOSITION 2.3. Let T be a product preserving functor. 

If V = U\ © U2 is a direct sum of subspaces £/i,£/2, then we have f(V) = 
r{JJi)®F(U2). 

If f :V —> W is linear, then we have 

' 1) ker F(f) = ^(ker/) , im^( / ) = ^( im/ ) 
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PROOF: V is a direct sum of U\ and U2 means that the mapping $ : U\ x U2 —» V 
given by $(1x1,1*2) = ui + 1*2 is an isomorphism. According to Proposition 2.2 
F(&) : F(U\) x F(U2) —> F(V) is an isomorphism. By the definition of sum in 
F(V) we obtain that ?($) is given by Jr($)(xi,x2) = x± + x2. It means that 

r(v) = r(u1)®r(u2). 
To show (2.1) we consider a subspace U such that V = ker/ © U and we denote 

by i : kerf —• V and j : U —> V the inclusions. If we apply T to the equality 

/ o % — 0 and to the isomorphism / oj : U —• i m / we obtain ^(/Ji^ker/) = 0 and 

the isomorphism F(f)\jr(u) - « (̂E0 -* .F(im/). This implies immediately (2.1). • 

Now we formulate properties of prolongations of Lie groups and their actions on 
manifolds by a product preserving functor. Analogously we can prove: 

PROPOSITION 2.4. Let J7 be a product preserving functor. 

H G is a Lie group, then F(G) is also a Lie group. H m : G x G —• G is the 

product in G and 1 is the unit ofG, then F(m) is the product in T(G) and F(l) is 

the unit of F(G). 

H f :G —* G1 is a Lie group homomorphism, then T(f) : F(G) —• F(G') is a Lie 

group homomorphism. Particularly, ifHcG is a Lie subgroup, then F(H) is a Lie 

subgroup of F(G). 

PROPOSITION 2.5. Let J7 be a product preserving functor. 

H a Lie group G acts on a manifold M and A : G x M —> M is the action, then 

T(G) acts on T(M) and F(\): F(G) x T(M) - • F(M) is the action. 

In particular, ifad:GxG—*G is the adjoint action of G on G, then T(ad) : 

T(G) x T(G) - • T(G) is the adjoint action of T(G) on F(G). 

H p : GL(Rn) x Rn - • Rn is the standard action, then F(p) gives an action of 

A-linear transformations on ,F(Rn) and we Lave a Lie group monomorphism 

I: F(GL(Rn)) • GLA(F(Rn)) C GL(FRn) 

given by I(X)(y) = F(p)(X, y) for X € F(GL(Rn)) and ye -F(Rn). 

PROOF: The unique nonstandard part of the proof is the injectivity of i". Applying 
J7 to 

Rn' x Rn D GL(Rn) x Rn — • Rn 

we obtain that the induced mapping 

An* xAn = ?(Rn2) x F(Rn) D F(GL(Rn)) x F(Rn) ——• ^(Rn) 

is given by F(p)([x)]i (xk)) = (2"=i xj x')- I* implies the injectivity of J. • 
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We finish this section by remarks on Lie algebras. Using the standard methods 

we obtain 

PROPOSITION 2.6. Let T be a product preserving functor. 

Ifg is a Lie algebra, then -F(g)is also a Lie algebra with the Lie bracket T([, ]), 

where [, ] : g x g —• g is the Lie bracket in g. 

II f : g —• g' is a Lie algebra homomorphism, then F(f) : F(Q) —• T(g') is also a 

Lie algebra homomorphism. 

In Section 4 we will verify 

PROPOSITION 2.7. Let T be a product preserving functor. If G is a Lie group 

and C(G) is its Lie algebra, then there exists a canonical Lie algebra isomorphism 

VG : r(C{G)) -> C(F(G)). 

3. Product preserving functors and fibered manifolds. 

Let T be a product preserving functor. If 7r: Y —> X is a fibered manifold, i.e. 

7r is a surjective submersion, then T(v) is also a surjective submersion. Therefore, 

F(ic) : F(Y) —* F(X) is a fibered manifold. In particular cases of vector bundles 

and principal fibre bundles we can show very interesting properties. We start with 

vector bundles. We have 

PROPOSITION 3.1. Let T be a product preserving functor. 

Ifir:E-*Misa vector bundle, then T(TC) : F(E) -+ F(M) is a vector bundle 

too. If V is the standard fibre of Et and (p : E\u —• U x V is a trivialization 

over an open subset U C M, then F(V) is the standard fibre of T(E) and !F(ip) : 

^(E)\^V) -> f(U) x F(V) is a trivialization overF(U) C F(M). 

HV:E-*E'isa vector bundle homomorphism, then ,F(tf) : F(E) -+ F(E') is 

also a vector bundle homomorphism. 

Let Ei,..., Ek be vector bundles over the same base M and E be a vector bundle 

overN. If* : -Ei x Af • • • x M-E* —> E is a k-linear mapping covering $ : M —> N (z), 

then ^ ( * ) : F(E\) x^M)''' x.F(M) F(Ek) -+ F(E) is a k-linear mapping covering 

F(j>) : f(M) -> F(N). 

PROOF: Let <pi : E\V. —> Ui x Rk for i = 1,2 be two trivializations of E. Then 

<Pi oipt1 : (UxnU2) xRk-+ (E/i CiU2) x Rk is given by (tpiotp^fav) = (x,L(x) v), 

3 ) It means that for each point x £ M V transforms (E\)x x • • • x (Ejfe).r into Ev(^) an(^ * x = 

^K-fix),x-x(Ek)x - ( f t ) . * • • • x (Ek)x ->'-%*) is ^-linear. 
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where L(x) is a matrix. It implies that 

T(<p{) o F(<p2)-* : (F(UX) flF(U2)) x F(Rk) - (T(U{) n F(U2)) x :F(R*) 

is given by (F(<pi)oF,((p2)'~
1)(xtv) = (x, Jr(L)(x)v). Let us observe that by Propo

sition 2.5 F(L)(x) e GL(F(Rk)). 

Similarly we prove other parts. • 

Similarly as in Proposition 2.3 we deduce 

PROPOSITION 3.2. Let T be a product preserving functor. 

HE = Ei®E2isa direct sum of two vector bundles E\ and E2, then F(E) = 
T(EX)®T(E2). 

II f : E —• E' is a vector bundle homomorphism such that the function x —• 
dimker/x is constant on the base of E (A), then 

ker.F(/) = ^(ker/ ) , im^( / ) = F(imf). 

In the case of principal fibre bundles we have: 

PROPOSITION 3.3. Let T be a product preserving functor. 

If P(M, G, 7r) is a principal fibre bundle with base M, structure group G and 

projection IT, then J:(P)(!F(M),T(G)^T('K)) is a principal fibre bundle with base 

F(M), structure group F(G) and projection T(n). If <p : P\u -+ U x G is a tri-

vialization over U, then F(<p) : F(P)\?(U) -* F(U) x F(G) is a trivialization over 

If f : P(M,G) —* P'(M',G') is a homomorphism of principal fibre bundles co

vering tp : M —• M' with an induced Lie group homomorphism p/ : G —* G', 

then F(f) : F(P) -* ^(P') is a homomorphism of principal fibre bundles cove
ring F(<p) : F(M) -> F(M') andF(pf) : T(G) - • T(G') is the induced Lie group 

homomorphism. 

The proof is standard. 
In section 4 we will prove: 

PROPOSITION 3.4. Let J7 be a product preserving functor. There is a canonical 
monomorphism IM : F(LM) —• L(TM) of principal fibre bundles, where LM 
denotes the linear frame bundle. 

4) This assumption gives a sufficient and necessary condition under which im/ C E' and ker/ C E 
are vector subbundles. 
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4. The commutativity of product preserving functors. 
In this section we prove a very .interesting property saying that for two pro

duct preserving functors T\^T2 there exists a natural diffeomorphim T\(T2(M^) —> 

T2(T\(M^). For particular functors T\ and F2 we can show some supplementary 

properties of this functor transformation. 

We start our considerations from the following remarks: 

Let T\,T2 be two product preserving functors and let A\ — Jr\(HL),A2 = ^ i (R) 

be their Weil algebras. We denote by 7rĵ  : T\(M) -+ M and TT2^ : P2(M) —> M the 

bundle projections for T\ and T2 respectively. 

The projection n\ : A\ —* R is an algebra homomorphism and in consequence the 

induced mapping 

J iO- i ) : F2(A\) = T2(F\(R)) - A2 

is also an algebra homomorphism. Since the projection Tt2
Ai : F2(F\(]BL)) -* -4i is an 

algebra homomorphism, thus 

(4.1) p*>* = sAuA, o ( * A l , r 2 ( * i ) ) : W i ( R ) ) — Ai ® A2 

is an algebra homomorphism, where 8At ,A2 - A\ x A2 —• A\ ® .A2- is the canonical 

bilinear mapping. We have the following proposition: 

PROPOSITION 4.1. Let T\ and T2 be two product preserving functors. If A\ = 

^ i (R) and A2 = ^ ( R ) are their Weil algebras, then the mapping p*2**1 defined by 

(4.1) is an algebra isomorphism. 

PROOF: Let a j , . . . , a k i be a basis of A\ and a j , . . . , a ^ 2 be a basis of A2. Now 

{a},® afy : v = 1 , . . . , K\, a = 1 , . . . , K2 } is a basis of A\ ® A2. We can assume 

that 7ri(aJ,) = 1 and 7r|(aJ) = 1. 

Using the algebra monomorphism i\ : R —• A\ given by i\(t) = f • 1 we obtain 

an inclusion ^(h) : A2 —> ^2(^1 (R)) and in consequence ^2(*i)(a#i) belongs to 

^2(*?i(R))- On the other hand, identifying a\ with the constant mapping A\ —• A\, 

the induced constant mapping ^(a),) is identified with an element of ^2(^1 (R))-

Now we can verify 

^••*(J*(ai)*(.,)(«£)) 

= * . 4 t A ( - i . ( ^ ( « l ) ^ ( » ' i X ^ ) ) , i e - ( * i ) ( ^ ( « i ) ^ ( i i X - ! i ) ) ) 

= SAuAd<(Mal)),F2(*l)(r2(ii)(«l))) 

= 8AuA2(al,al) 

= al®al. 
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because ^ (^2(11 )(<£)) = 1 and T2(^i)(T2(al
v)) = 1 It implies that p**^ is an 

epimorphism. In consequence p^2'^1 is an isomorphism because dimJr2(Jr\(1R)) = 
dim.Ai ® .A2. D 

Propositions 4.1 and 1.2 imply 

THEOREM 4.2. Let T\ and T2 be two product preserving functors. If A\ = ^ ( R ) 

and A2 = ^(R) are their Weil algebras, then there is one and only one family 

*1M - T2(T\(M)) -* Ti{jF2(M)) of diffeomorphisms such that 

(1) for every manifold M the following diagram 

flu 

r2(Fi(M)) • Fi(MM)) 

(4.2) -ílo-Jî(M)} }-£ " öV2(м) 

(4.3) 

м - ^ м 

commutes; 

(2) for every smooth mapping tp : M —• N the diagram 

?2(F\(M)) — > ^W(-V)) 

^ I C Í ( V ) ) 
FifrM) • * k ( W ) ) 

commutes. 

(3) ifpT^T^ : f2(F\(R)) -> A\ ® A2 and p*l>** : Ji(^2(R)) -» -42 ® -4i are 

the algebra isomorphisms defined by (4.i), then. 

(4.4) -n = (p™)-1 o a o p * . * : .F2(^i(R)) - -Fi(.F2(R)), 

where a : A\ ® A2 —> A2® A\ is the algebra isomorphism verifying the 

condition a(a\ ® a2) = a2 ® a\. 

Furthermore, for two manifolds Af, N we have TJMXN = VM x *//v. 

PROOF: Let us observe that 17a is an algebra isomorphism. Now by Proposition 1.2 

the proof is finished. • 

In the case of the tangent bundle ^(Af) = TAf we have 
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PROPOSITION 4.3. Let T be a product preserving functor. There exists one and 

flKt 

T{TM) —-» T(TM) 
?(J>M)\ . S'Pf(M) 

HM) 
(where PM - TM —* M is the projection) such that the following conditions hold: 

(1) for every smooth mapping <p : M —• N the following diagram 

F(d<p) 

T(TM) > T(TN) 

d?((p) 
TT(M) > TT(N) 

commutes; 

(2) if tf a : TR - • R x R and *^(]R) : T^*(R) -> F(R) x F(R) are the standard 

trivializations, then 

rm : F(TR) > .F(R x R) = .F(R) x F(R) > T(F(R)). 

Furthermore, for two manifolds M,N we have TJMXN = VM X VNi 

PROOF: It is sufficient to verify that in this case 17a = (pT ,^)_ 1 o a o p*>T and it 

is a vector bundle isomorphism covering the identity on F(R) and next we apply 

Theorem 4.2. • 

Let G be a Lie group. We denote by C(G) the Lie algebra of G. For a Lie 
group homomorphism / : G —> G1 we denote by C(f) : C(G) —> C(G') the induced 
Lie algebra homomorphism. After identification C(G) with the tangent space TeG, 
where e is the unit of G, the mapping C(f) is identified with the differential def : 
TeG -+ TeiG

9. The functor C(G) is a product preserving functor from the category 
of Lie groups and their homomorphism into the category of Lie algebras and their 
homomorphisms. For this functor we have: 

PROPOSITION 4.4. Let J7 be a product preserving functor. If G is a Lie group and 

C(G) is its Lie algebra, then the restriction (TIG)\F(C(G)) : F(C(G)) —• C(F(G)) is a 

Lie algebra isomorphism, where TJG is from Proposition 4.3. 

The restriction (T)G)\T(C(G)) W--- be denoted also by 170?. 
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Before the proof of this proposition we recall the definitions and properties of lifts 
of vector fields to a product preserving functor T. 

The standard example is so-called complete lift. If X : M —> TM is a vector 
field on M, then we define Xc = rjM o P(X), where rjM is the isomorphism from 
Proposition 4.3. If (ft is a local flow of X, then -F(y><) is a local flow of .X"c. It 
implies that the complete lift has the following properties 

(4.5) (aX + 0Y)C = aXc + 0YC, [X, Y]c = [X c , Yc] 

for all vector fields X,Y on M and all reals a, (3. 

In order to define other examples of lifts of vector fields to T we consider the 
mapping $ : R x TM —> TM given by ^(*, v) = t v. Using the natural isomorphism 
riM : HTM) —• T(FM\ the induced mapping F(V) : A x F(TM) -> f(TM) 

determines 

$ = riM o ^ ( * ) o (ioA x ^ ) : A x T(FM) - • T(;FM). 

For an element a G A and a vector u G T(^M) we define 

(4.6). a . v = $(a,tT) 

Now for a vector field X on M and an element a € A we define 

(4.7) XW = a - . X c = $(a , .X c ) . 

X(a) is a vector field on F(M) called a-lift of X. This a-lift was introduced by Kolaf 
[8]. We have Xc = X^x), where 1 is the unit of A. These a-lifts have the following 
properties (see [5]): 

(i) If X, Y are vector fields on M, a,/? are reals and a,b € A, then 

(or X + P Yfa) = aX<a) + 0 Y<a) 

A-Caa+M = aXM + /3-X"(6) 

[XM,Y(h)] = [X,Y](ah) 

(ii) If X is a left invariant vector field on a Lie group G and a € A, then X^a) is a 
left invariant vector field on F(G). 

PROOF OF PROPOSITION 4.4: Let Eu..., EN be a basis of C(G) and ax,..., aK be 
a basis of A = F(R). By Proposition 2.1 T(Ei),.. .,T(EN) is a basis of F(C(G)) 

over A. On the other hand by (ii) Efv) belongs to C(F(G)) for j = 1 , . . . , 1V and 
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v = \,...,K. Of course, t)G(aT(X)) = .#•> for aU a e A and X € C(G). By 

Propositions 2.2 and 2.6 

[a^E^a^Ei)] = M » [ / l - J i ) , W ] = a,aM.F([Si,.B,]). 

Thus 

»7G([a,^(.Ei))aM^(.B,)]) = 47G(a,af,^([£i,£7.])) 

= [Ej, Etf"'^ 

= [E^'),Ela*)] 
= Ma,^(S i)) , t7G(a f ,^(S0)]-

Since by Proposition 4.3 -7G is a linear isomorphism, thus the proof is finished. • 

We finish this paper by the following proposition announced in Section 3. 

PROPOSITION 4.5. Let T be a product preserving functor, A = T(R) be its Weil 

algebra and let LM be the linear frame bundle over M. 

For every manifold M there exists one and only one monomorphism 

IM : T(LM) -> L(T(M)) 

of principal fibre bundles covering the identity on T(M) and with the inclusion 

I: T(GL(Rn)) -> GL(T(Rn)) given in Proposition 2.5 such that for each chart (U, <p) 

on M we have IM°T((TV) = ^(y).. where c^ : U —> LM anda?^ : T(U) —> L(TM) 

are local sections associated with <p and T(<p) respectively. 

The family {IM} is natural, i.e. for every embedding tp : M —> N of two n-

dimensional manifolds M, N the diagram 

JT^IM) JO_> L(T(M)) 

:F (L(v ) )l JjWrt) 
T(LN) —^-> L(T(N)) 

commutes, where L(tp) : LM —> LM is the induced mapping. 

PROOF: We choose the canonical mapping KM : LM x Rn -* TM, KM(U V) = l(v). 

Let us define IM : T(LM) -* L(TM) by 

(4.8) IM(T)(V) = (TIM oT(KM))( lv) , 

where / E T(LM), v € An and TJM is defined in Proposition 4.3. Since KM(1X, V) = 

KM(U X v) we obtain 

T(KM)(TX, V) = T(KM)(U XV) 
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for I € F(LM), X € Jr(GL(Rn)) C GL(f(Rn)) and v € An, where the inclusion I 

is described in Proposition 2.5. Therefore 

(IM(TX))(V) = (IM(T))(XV) = (IM(T)X)(V), 

i.e. IM is a principal fibre bundle homomorphism. Since the corresponding Lie group 

homomorphism is the inclusion I, IM is a principal fibre bundle monomorphism. 

If <p is a chart on M, then KM(<7<P(X),V) = dtp~1((p(x),v) after the standard 

identification TRn with Rn x Rn . Using T and (4.8) we obtain 

IM(T(^)(X))(V) = (T,M O7(KM))(T(°*)(*\*) 

^(riMO^d^1))^^)^)^) 

= d ^ - 1 ) ( ^ ) ( * ) , t ; ) 

= <^(v)(*)0>)-
Thus JM O T(<*V) = <*rM. D 
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