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AN APPLICATION OF PRINCIPAL BUNDLES TO 
COLORING OF GRAPHS AND HYPERGRAPHS 

R. James Milgram 

Peter Zvengrowski 

§1. INTRODUCTION 

An interesting connection between the chromatic number of a graph G and 

the connectivity of an associated simplicial complex N(G), its "neighborhood 

complex11, was found by Lov&sz in 1978 (cf. [4], or [2], p.260). In 1986 a 

generalization to the chromatic number of a k-uniform hypergraph H, for k an 

odd prime, using an associated simplicial complex C(H), was found ([1], Prop. 

2.1). 

It was already noted in the above mentioned papers that there is an action 

of Z/2 on N(G), and of Z/k on C(H), for any graph G and any k--uniform 

hypergraph H, k > 2 (a 2-uniform hypergraph is just a graph). In this note we 

take advantage of this action to construct an associated principal (Z/k)-bundle £, 

and state theorems relating the chromatic number of the graph or hypergraph to 

the classifying map of f into B(Z/k). 

In §2 the necessary definitions are given and the main theorems (Theorem 

2.1 and Theorem 2.2) are stated. In §3 these theorems are compared with the 

previous ones based on connectivity, A spectral sequence argument shows they 

imply the previous ones, and examples are given where the previous theorems 

give no information whereas the ones in this paper give sharp lower bounds for 

the chromatic number. In §4 the proofs of Theorems 2.1, 2.2, which in fact are 

surprisingly elementary, are given. 
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§2. DEFINITIONS AND STATEMENTS OF THE MAIN THEOREMS 

FOI convenience we recall several definitions that appeal in [1], [2] and [4], 

as well as several results proved theie. First. we consider a giaph G (finite, 

undirected, with no isolated points oi loops). Its neighborhood complex 

N = N(G) has the same vertex set VQ as G, and a set (vQ,...,v) of vertices is 

a simplex iff vQ,...,v have a common neighbor in G. Write Y = |N(G)| foi 

the undeilying polyhedron. For any vertex v of G, let 7(v) C VQ be the 

(non-empty) set of all neighbors of v, then N(G) can also be thought of as the 

collection of 7(v)'s and all theii faces. Notice v I f(v) foi any v € VG-

A vertex of N'(G), the baiycentric subdivision of N(G), will be written 

b(v0,...,v) wheie (v0,...,v) is a simplex of N. Setting rb(v0,...,v) = 

b(n{7(v.): 0<i<r}) , it is shown in [4] that Ydefines a simplicial map Y: N' -*N' 

with T3 = r. Thus, setting M = IraTC N' and X = |M| C Y, it was noted 

in [4] that X is a retract of Y and T an involution of X. Here we show further 

that X is a strong deformation retract of Y and Y is fixed point free (Prop. 4.3 

and Prop. 4.2 respectively). Letting W be the oibit space X/(Z/2), we have a 

principal Z/2 bundle £: Z/2 <=+ X —w W. Such a bundle has a classifying map 

c = c(f): W -4 B(Z/2) = Off", unique up to homotopy ([3], Ch.4). 

2.1 THEOREM: If G can be colored with n + 2 colors, then c compiesses to 

RPn, i.e., there is a map c^ W -*IRPn with c homotopic to the 

composition W ^ RPn 4 RP°\ 

Now considei a k-uniform hypeigraph (H,£). Following [1], the simplicial 

complex C = C(H) is defined as follows. Its vertices are all ordered k-tuples 

[v1,...,vk] where {vp.-.-v-J is a k-edge of H, i.e. fy,...,^} € E. A set of vertices 
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[vj,...,vk], 0 < i < r, forms an r-simplex of C if the subsets V. = {v?,v.,...,v!} 

are mutually disjoint and form a complete k-partite subgraph of H. 

Let X = | C | , and Z/k acts freely in the obvious way on both G and X by 

cyclic rotation o[v1,..-lvJ = [vk,v1,...,vk_1]. Again, we take W = X/(Z/k) as the 

orbit space giving a principal (Z/k)-bundle £, with classifying map c: W-*B(Z/k). 

To state the theorem, a specific model for B(Z/k) will be useful. Take 

g(t-i)(k-l)-l t 0 fce fae set of all t * k real matrices (a..) with every row and 

column sum zero, and Ea.. = 1. Cyclic permutation of columns induces a Z/k 

action on S**"1'* ' \ which for fixed k is compatible with the inclusion 

s(t-i)(k-l)-l s st(k-lH? L e t t i n g s ^ ^ H / f z / k ) = Qt, we thus have 

Q1 = 0 C Q2 C Q3 C ... C Q = u{Qt: t > 1}, where Q is given the weak 

topology. For k prime the action of Z/k on s'*"1^k"1H is also free, and Q is 

then a model for B(Z/k). 

2.2 THEOREM: If H is t-colorable and k prime then the classifying map c: W -» 

Q compresses into Qt-

§3. COKPARISON WITH THE CONNECTIVITY THEOREMS 

We assume Theorems 2.1, 2.2 for the remainder of this section. Our first 

result is precisely Prop. 2.1 of [1]. 

3.1 PROPOSITIQH For any k-uniform hypergraph H, k prime, if x is 

((t-l)(k-l)-l)-connected then H cannot be colored with t 

colors. 

PROOF: Using standard homotopy techniques the map c may be replaced by a 

fibration, so up to homotopy type one has a fibration X «-+ W --<-» Q = B(Z/k). 
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We consider the Serre spectral sequence of this fibration in cohomology, 

with coefficients Z/k. Recall Hl(Q;Z/k) »Hi(K(Z/k,l); Z/k), which in turn is the 

group cohomology H^Z/k; Z/k) « Z/k, i > 0 (cf. [5], p.122). This spectral 

sequence in general has E. term with twisted coefficients, however the 

assumption that the fibre X is ((t-l)(k-l)-l)-connected implies in any case that 

Z/k = H^QjZ/k) cannot be in the image of any differential for i < (t-l)(k-l) 

and thus survives to E . In particular 0 # c : H ^ ^ - ^ Q j Z / k ) -» 

H ( t - l ) (k-D ( W ; Z / k ) . 

However, if c compressed to C-:W -» Q (a CW-complex having dimension 

(t - l)(k - 1) - 1), then obviously c*: H(t"1)(k-1)(Qt;Z/k) = 0 -

H^"1^ '(W;Z/k) satisfies Cj = 0, which is impossible since this would imply 

c = 0 in the same dimension. Hence c does not compress to Qt, and by 

Theorem 2.2 H is not t-colorable. 

Similarly we obtain Theorem 2 of [4], which we now state. 

3.2 PROPOSITION If Y = |N(G)| is (t - 2)-connected for a graph G, then 

G is not t-colorable. 

The proof is quite similar to that of the previous proposition, noting first 

that if Y is (t-2)-connected then so is its retract X, then that Ht"1(IRP(B;Z/2) -• 

Ht-1(W;Z/2) is non-zero so c cannot be compressed into Off*"2, and finally 

applying Theorem 2.1. We omit the details. 

It was shown as a corollary in [4] that Y = |N(G)| is never contractible. 

From our Theorem 2.1, we can easily improve this as follows. 

3.3 COROLLARY (of Theorem 2.1): If a finite polyhedron Y equals N(G) for 

some G, then its Euler characteristic *(H) is even. 

PROOF: From the prindpal* (Z/2)-bundle, j(X) = 2j(W). But *(X) = ^(Y) 

since they have the same homotopy type (Proposition 4.3). 
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3.4 EXAMPLE: TO any vertex "v" of the complete graph K , attach a "tail" 

{v>a}>{a,b},{b,c},{c,d},{c,e}l{d,e}. The resulting neighborhood 

complex of the new graph G will only be O-connected, so the Lovasz 

theorem (Proposition 3.2 above) implies only chr(G) > 3 for its 

chromatic number. On the other hand the classifying map for the 

graph K is the inclusion RPn~~ <--> RP00, which does not compress to 

RPn , and this will remain the case for the classifying map of G. 

So Theorem 2.2 gives chromatic number (G) > n, which is sharp. 

Similar examples can be given for hypergraphs. 

§4. PROOFS OF THE MAIN THEOREMS 

4.1 PROOF OF THEOREM 2.2: To compress the classifying map into Q, it suffices 

(cf. [3], Ch.4, Th. 12.2) to find a (Z/kHquivariant map X=|C(H)|-4S(t"1)(k"1)"1, 

with the action of Z/k as given in §2. But Lemma 3.3 of [1] shows precisely 

the existence of such an equivariant map g: X -• i^*"1)^1)--^)} -* S^"1^*"1^"1 

(which is (Z/k)-equivariant) completes the proof. 

The proof of Theorem 2.1 requires two preliminary lemmas about the 

simplitial map T: Ny -* N', in addition to the properties found in [4] (and 

mentioned in §2 above). It will also be useful to the use the notation V, W, V., 

etc. to represent subsets of VQ which are simplices of N. Notice V C V and 

Tb(V) = b(W), rb(V') = b(W'), implies W 2 W ' , while r f y v ) = b(V0) with 

V c v0. 

4.2 LEMMA: T: M -» M defines a free Z/2 action on M. 
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PROOF: For any vertex w € V, let M be the subcomplex of N' consisting of 

all simplices of N' spanned by vertices of the form b(V), where V is a simplex 

of N with w € V. An arbitrary simplex <r of N' (and hence of M) can be 

written <r = (b(VQ),...,b(Vg)), where the V. form a nested collection of simplices 

of N, say without loss of generality Vfl c V. c ... C V . If w is any vertex of 

VQ, then w € V. > 0, and hence <r is a simplex of Mw. On the other hand 

T(Mw) n Mw = 0 since if w € V then w (f n {T(V): V € V}. 

4.3 LEMMA: r ~ idy, and thus X is a strong deformation retract of Y. 

PROOF: By a standard technique (cf. [6], p.302) it suffices to show, for any 

y 6 Y, that y and T y lie in a common simplex of N. To this end, it suffices 

to consider the vertices b(VQ),...,b(V ) of any simplex <r of N' and show there is 

a simplex W of N such that these vertices together with r2b(VQ),...,r2b(V ) all 

lie in W. As before we may assume V- c Vj c... C V , and set T2b(V.) = bW.). 

From the observations preceding 4.2, 

Vn C V- c ... C Y 
0 1 q 
in in in 

wn c V- c ... c v 
0 - 1 - q 

hence taking W = W will work. 

Finally, r3 = T and X = ImT implies r2 |X = idx> whence Imr2 = Imr = XQ 

and the above homotopy is constant on X. 

4.4 PROOF OF THEOREM 2.1: Given a coloring of G with n + 2 colors, we define 

(as in [2]) -M. = U{|M |: v has color i}, where M is defined as in the proof of 

4.2 above, and X. = X n |M.|.. We note (again as in [2]) 
(a) X n TX. + 0, 
(b) X = U{X.: 1 < i < n + 2}. 
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From (a) and (b) we have, 

(c) X = U{X. U TX.: 1 < i < n + 1}. 

Since X. is closed, from (a) there is a Urysohn function g.: X -»I with g.(X.) = 0, 

g.(rx.) = 1. Define g: X -* Rn+1 by 

g(x) = (g l(x) = g€r(x),„.gn+1(x) - gn+1r(x)). 

Clearly gr(v) = -g(v), and g(x) £ 0 for all x € X by (c). Composing g with 

the usual (Z/2-equivariant) retraction Rn+ - { 0 } -• Sn gives a Z/2-equivariant 

map X -» Sn, and this suffices (as mentioned in 4.1 above) to get a classifying 

map W -4 RPn. 
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