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RENDICOMTIDEL CIRCOLO MATEMAПCO DIPALERMO 
Serie II, Suppl. 59 (1999) pp. 189-199 

INTEGRATION OF A DENSITY AND THE FIBER INTEGRAL FOR 
REGULAR LIE ALGEBROIDS IN A NONORIENTABLE CASE 

URBANSKI TOMASZ 

Abstract 
This paper splits into two parts. The first drives to integral of a density. 

The second part refers to Lie algebroids. I define an integration operator of 
A-differential forms with values in an orientation bundle over the bundle of 
isotropy Lie algebras in vertically oriented Lie algebroid A. I establish five basic 
properties of this operator, its commutation with an exterior and Lie derivations. 
Some of them are proved here. 

1 Introduction 

Basic facts and concepts with respect to Lie algebroids can be found in [2], [3], [1], [4]. 
Required results referring to vertically oriented Lie algebroids and the fiber integral of 
R-valued forms are included in [3]. 

R.Bott, in the work [5], has defined an integration operation of differential forms 
on manifolds with values in an orientation bundle. This operation was a tool to 
cohomological researches of nonorientable manifolds. The aim of the presented work 
is to introduce an analogous fiber integral of or^-valued forms on the ground of regular 
Lie algebroids with usage of ideas which comes from works [3] and [5]. 

In perspective, this work drives to an examination of a cohomology algebra of a 
regular Lie algebroid over a nonoriented base manifold. 

In this paper we associate n-dimensional manifolds M and N with differential 
structures 21 = {(UQ,xa)}aeI and 05 = {0^ ,2 / /0}/J € J respectively. 

2 Differential Forms with Values in an Orientation Bundle 

2.1 Pullback of Forms with Values in an Orientation Bundle 

Consider an orientation bundle or^ of the differential manifold N [5]. Let £2 (N\ or#) 
be the vector space of differential forms on N with values in the orientation bundle 
or//. So, fc-form $ is a global section of the vector bundle 

Д T*JV® oř*. 
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Pointwise we have $q : /\k TqN -> OTN\q. In many sources an element of the SI (N\ OTN) 
is also called a density. 

To define a pullback operation assume that U is an open subset of M, V is an 
open subset of N and T : U -> V is a diffeomorphism. Then, it is easy to show, that 
there exist an induced isomorphism of vector bundles T : OTM\U - • orjv|v such that 
the diagram 

„-![[/]—.zL^-ipf] 

u-
commutes. Knowing that, for arbitrary $ G fi* (N; OTN) we define a form T*$ G 
ft* (£/; orAf |^) by a formula 

(T;«)p (m A . . . A wA) = T"1 ($T(p) (T^m A . . . A T»vk)) , p G t/. 

If we suppose that u G ft* (JV), e G Secorw, it is natural to define a form u ® e G 
£2*(1V;orAr)by 

lb 

(u®e)q = uq®eq:/\TqN —• o r ^ 

Vi A . . . A Vk i—• cc;g (vi A . . . A vjb) • eg. 

Than for any peU holds an equality 

( T (« ® e)), = (Tw)p ® f;1 (er ( p )). (1) 

For each a G I denote by ea the map given by 

ea:Ua —• orM (2) 

P "—• [(OiPfl)]'-

It states the vector basis of a module Sec orjif \Ua. Assume in addition xa = (x? , . . . , xJJ) 
is a local coordinate map of the manifold M corresponding to a and a; is a form given 
by dxf A... AdxJJ. Then we define a form |dxj A . . . A dx£| with values in an orientation 
bundle orj^, by 

|dx? A . . . A dx£ | = (dxf A . . . A dx£) ® ea. (3) 

Now we can establish 

Proposition 1 Suppose (Uaixa), (V/j-ŷ j) are two charts on M and N respectively, 
and letT :Ua-+Vpbea diffeomorphism (not necessary orientation-preserving). Then 
we have a relation 

T \dyf A . . . A dy*\ = |J (TPa)\ • \dxf A . . . A dx\ 
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Indeed, for each p € Ua, from (1) and the abvious equality sgn J (T^1 (T(j>))) = 
sgn J (Tpa (p)), we see that 

( r | < A . . . A d j ^ | ) p 

= (r^A.-.A^j^f.-^e^Tb))) 

= ( r (dj/f A... A d^))^ ® (sgn J (TPa (p)) • ea (p)) 

= (J (-*, (P)) • (dxi A • • • A dx%p) ® (sgn J (7>a (p)) • ea (p)) 

= (sgn J (TPa (p)) • J (T^ (p))) • ((cte? A . . . A d**)- ® ea (p)) 

= (\3(TPa)\.\dx°lA...AdX°n\)p. 

In particular it follows, that if g e fi° (N) is an arbitrary real function, then 

r ( 0 . | d y ? A . . . A ^ 

2.2 Integral of a Density 

Let pair (Rn,y = id) be the canonical identity chart, U an open subset of R n , and 
g E fi° (U) a measurable function on U. We define 

g-\dyiA...Adyn\= gdyi. ..dyn. 
Ju Ju 

Suppose furthermore, that V is an open subset of R", T : U -> V is a diffeomor-
phism and let $ G fln(Rn;orRn) be such a form, that supp$ C V. Then, by the 
classical change of variable formula 

/ V * = f(goT)\JT\-\dyiA...Adyn\ 
Ju Ju • 

= / 9' \dyi A ... A dj/n| 
Jv 

= / * . 

Jv 

On arbitrary manifold M and a form $ G fln (M; orjtf) we define an integral 

/ 
Jл 

Ф 
M 

in the following manner 

• take an atlas {(Ua,xa)}aeI (not necessary maximal), 

• take a subordinate partition of unity {pa}aeI, 
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• assume 

It can be easily shown, that above definition doesn't depend on choice of the atlas 
and the patition of unity. 

3 Fiber Integral of a Density in a Vertically Oriented Lie 
Algebroid 

3.1 Definition and Basic Properties 

Let flA (M; OTM) denotes a vector space of .A-diflFerential forms with values in an ori
entation bundle or^f, where A is an arbitrary Lie algebroid over the manifold M, i.e. 
a space of all cross-sections of /\ A* ® orM. 

Definition 1 Suppose in addition, that A' is a second arbitrary Lie algebroid over 
the manifold N, and H : A\v -> A!\v, is a homomorphism A in A' inducing a dif-

feomorphism H of open subsets U C M on V C N. Let H : orjtf |^ -> or# |v be the 
isomorphism of the vector bundles induced by H. Then, for each form $ € fijj, (N; orjv) 
we define a form H*$ G Q*A (U\ OTM\V) by 

(H**)p (t1A...Atk) = ¥p ( « 4 w (Hh A . . . A Htk)) , p € U. 

Definition 2 An ordered pair (A,E) is called vertically oriented Lie algebroid, if A is 
a regular Lie algebroid of rank n over a foliated manifold (M, T), 

0 -> g <-> A --» F -> 0 

is its Atiyah sequence, and e is nowhere vanishing cross-section of the bundle / \ n g. 

Definition 3 Let (A', e') be one more vertically oriented Lie algebroid over a foli
ated manifold (A', J7'), and suppose that rankflf = rankp'. A homomorphism of Lie 
algebroids H : A-t A', which induces H : M -> M' and fulfils condition 

(Ля+)(eP) = 4,, pЄM 

is called homomorphism of vertically oriented Lie algebroids (A,e) into (A\ef). 

Since for any $ e Sln

A

k (M; OIM), k > 0, the form ^e$ 6 £lA (M; or^) defined by 

(ie$)p(t1A...Atk) = $p(epAtlA...Atk), p€M,UeA\p 

is horizontal (i.e. th(h$) = 0 for 77 G Sec<j), there exists uniquely determined tan
gential differential form *G Q% (MjorAf) such that ie$ = 7**. Assume furthermore, 
that if deg $ < n, then 2e$ = 0. 
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Definition 4 By an integration operator of .A-differential forms on M with values in 
an orientation bundle orjif over the bundle of isotropy Lie algebras g in the vertically 
oriented Lie algebroid (A, e) we mean the operator 

yj : Ü\ (M; OГAÍ ) —> íî>-n (M; orл,) 

such that for each $ G fi^+* (M; or^) the value fA $ G $£ (M; orjtf) is the uniquely 
determined form defined by the formula 

7 * ( ^ Ф ) = ( - І ) " Ч Ф . 

Proposition 2 Integration operator defined above has the following properties 

(a) If H : (A,e) -> (.A',«s') w a homomorphism of vertically oriented Lie algebroids 
inducing the diffeomorphism H of open subsets U C M on V C N, then there is 
an equality 

6'oj =/foH* 
/A' 

onU. 

(b)JAoY = 0, 

(c) fA 7** A </> = * A fA $ for arbitrary forms * e Qjr (M; or*,) and 4>eilA (M), 

(d) fA<f> A 7** = (-l) n f c (fA<f) A ¥ for arbitrary forms ¥ € fi$r(M;orM), * € 
Cfr(M), 

(e) ^ is an epimorphism. 

We will omit proofs of properties (a) and (b) because they are based on simple 
calculations. Now we will set to proving the formula (c). 

Let A;, q be arbitrary integer numbers and # G fl^r (M; orjif), (/> G £lA (M). Locally 
we can write 

where ifr G fl? (M), and ea is defined in (2). Consider two cases 

• if k + q < n, then both sides of the proved formula are equal to zero, 

• if k + q > n, then there are two possible situations 

1. q < n. Then £A </> = 0, so it should be proved, that 

7 * * A <l> = 0, I IA 

but it is easy to see by a simple calculation. 
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2. q > n. To prove considered formula it is enough to show, that 

7* (* A L *) = ( - 1 )n (*+ '"n ) <• ( ^ * A «• 
To see it, let p € M be an arbitrary point and *. € .4| , i = 1, . . . , Jfc + g be 
such that ep = t\ A . . . A t„. Then 

( 7 * ( * A ^ ) ) ^»+lA"A'*+«) 

= (f^A-y'/fA (tn+1A...Att+,) 

= ( 7 ' ¥ A (-l)"<«-> . e < ^ (tn+1 A . . . A tk+q) 

= (-l)^-»)+*(«-») ( ^ A V * ) , ft*. A . . . A tk+9) 

= (-!)»('-»)+*('-») (* A 7 ' * ) p («t A . . . A **+,) 

= (-l)»('-»)+ f c^+«* (7»* A * ) , fa A . . . A t*+,) 

= (-l)B(fc+ ' -n) t, (7** A 0), fa+1 A . . . A ."*+,). 

Property (d) is a simple corollary of the formula (c), which we have just proved. 
To show the property (e), let consider a section a € See/Sfg* such that iea = 1 

and a form of the connection K : A -> g (than K\g = id). Than for arbitrary ^ e 
$V (Af; orjif) there holds an equality 

A 7** A K*a = * . 

Indeed, 

/ 7*^ A K*a = tf A / / «V, 

but 

7* ( / £ * V ) = (-l)n°te(/cV) = a(Koe) = a(e) = 1. 

4 Commutation of the Integration Operator with Derivatives 

4.1 Construction of exterior derivatives and Lie derivatives 

Let X e X (M) be an arbitrary vector field, a e I be any index, / 6 C°° (Ua) and 
ea : Ua -> orjif. Then the formula 

V*( /e a ) = X ( / ) . e a , 
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( d ^ ( * ) ( * o A . . . A . X * ) = 
k 

i=Q 
k 

+ ]T(-iy+ i* ([X*,.^ 
»<i 

ra($)(%A...A%) = 
lb 

^ ( - 1 ) , ^ o r 7 i ( * ( 7 7 o A . . . A ^ A . . . A 7 7 i k ) ) 
t=0 

k 

+ X)(-l)i+i$([r7i,y^ 

Remark 1 Incidentally, there is an exterior derivation operator d : ft* (M; OIM) -> 
ft*+1 (M; orAf) /oca/fy defined, over Ua by 

d(u® eQ) = (da;) ® e a 

in the R. Bott's book [5, p. 80]. See, that operator d% states its interpretation in the 
names of algebroids. 

Proposition 3 There holds an equality 

7* <><£ = <£'07*, (4) 

where 7 : A —> T is an anchor. 

4.2 Theorems of a Destination 

Theorem 4 The integration operator £A of A-differential forms on M with values 
in an orientation bundle OTM over the bundle of isotropy algebras g in the vertically 
oriented Lie algebroid (A, e) commutes with exterior derivatives 

d?o Ł=ŁoďÅ (5) 

if and only if 

(a l ) the isotropy Lie algebras g\p are unimodular, and 

(a2) the cross-section e is invariant with respect to the adjoint representation of A on 

Kg. 
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defines in a proper way the covariant derivative 

V : X (M) x Sec OTM —.> Sec orM -

Hence, the map 

defined by 

\ v :TM —>A{oтм) 

AV(V) = VW(.), veTM 

is a connection in the regular Lie algebroid A(OTM)- Since V is a flat connection, Av 

is a homomorphism of the Lie algebroids, whence the map 

L:A^A(OTM) 

defined by the formula 

L = A v o 7 

states a representation of the Lie algebroid A in the orientation bundle orM (for the 
definition of a representation see [4]). 

Now we have operators 

(ff£)x : $V(M;orM)—> fl* (Jlf; or*) , 

(0°Z\ : QA(M;OTM)—>^(M;orM), 

and 

0} : nr(M\orM)—>0^(M;orM), 

<£ : nA(M;oTM)—>SIA(M;OTM) 

called Lie derivatives (with respect to the ^"-tangent field X, and the cross-section 
7) 6 Sec A respectively), and exterior derivatives respectively, described by the formulae 

røJf(Ф)(Д1Л...ЛXJt) = £x^вX{9{X1Л...ЛXk)) + 

k 

~^{X1Л...Л[X,Xi]Л...ЛXk), 
ť = l 

rø,(*)('hЛ...Лł7å) = CLon{Ф{щЛ...Лvk)) + 
k 

-Y,ф{mл---л[v,rц]л---лvk), 
t = i 
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It is easy to see that 7* is a monomorphism. So, we can express proved equality in 
a form 

7* (<%yfA $ ) = 7* (JA (<#*)) , $ e QA (M; orM). 

Next, from (4) we obtain the following appearance of the proved formula 

Finally, from the definition of an operator %A we see, that we can focus below on the 
equality 

eJ>.e($) = (-l)nteo<($), $enA(M;orw). (6) 

It ensue from the definition of the operator i, that if deg$ < n — 1, then both 
sides of (6) are permanent equal to zero. The same argument proves, that when 
deg$ = n — 1, then equality (6) refines to formula 

l e od2($)=0 , ^ G f i r ' ^ o r M ) . 

Further, we have to give two technical lemmas. 

Lemma 5 Equality (6) takes place for each form $ G Q^+* (M; orM) (k>0 is fixed, 
and n + k < rank A) if and only if for arbitrary sections f u... , ffc+1 G SecA and for 
arbitrary chosen neighbourhood U C M on which e = OiA...Aon for some Gi G Sec^ 
(each point p G M has a neighbourhood U, for which e is in such a form), holds the 
following equality 

0 = f ̂  (-l) i+ J fo, <7j] A ax A... A di A . . . A a, A . . . A on J A 

AfiA-.-Affc+x 

+£(- i ) j + n fe 

Af1A...A| iA...A£ j fc+i. 

Lemma 6 Equality (6) takes place for each form $ G fij"1 (M; or^) if and only if 

S ("1)ť+j'(K-^l A ffi A • • •A ^ A • • • A ôj A . . . A an) 
i<j 

= 0 
u 

(when U and Gi are such, as in the above lemma) or equivalently, when g\p,p G M is 
unimodular. 
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Now, suppose that holds the equality (5). Considering forms of degree n - 1, we 
obtain from the first lemma, unimodularity of g\p ,p G M. Taking it under considera
tion, for arbitrary form of degree n (i.e. A; = 0), in view of the second lemma, we get 
the equality 

= 0, 77ESec./l, 
u 

^<7iA...A[77,<7,]A...A<7n 

t 

which implies, that 

n 

f\sdA(r))(e) = 0, 
u 

i.e. the invariance of the section e with respect to adjoint representation A in f\ng. 
Assume now, that there hold conditions (al) and (a2). The unimodularity of 

g\p,p G M gives, according to the second lemma, equality (6) for forms of degree 
n — 1. For forms of degree > n, the equality (6) follows from the first lemma. 

Corollary 7 The integration operator £A in unimodular invariantly oriented Lie al-
gebroid (A,e) of A-differential forms on M with values in an orientation bundle OIM 
over the bundle of isotropy algebras g induces morphism 

yj : H\ (M; orM) - > H*fn (M; orM), 

where HA (M\ OIM)* Hr (M\ OIM) o.re cohomology algebras in the algebra QA (M\ OIM) 
with respect to the operator d^r, and the algebra $1? (M\ OIM) with respect to the oper
ator d% respectively. 

Theorem 8 The integration operator J"A in unimodular invariantly oriented Lie al-
gebroid (A,e) of A-differential forms on M with values in an orientation bundle OIM 
over the bundle of isotropy algebras g commutes with Lie derivatives 

(^r)x°/{=^<>ra-. 

where r\ G Sec A and X G X (M) are ^-related. 
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