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RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO 
Serie II, Suppl. 71 (2003), pp. 127-131 

cV DIFFERENCE CALCULUS BERNOULLI-TAYLOR FORMULA 

EWA KROT 

ABSTRACT. In this note we derive the general ^-difference Bernoulli-Taylor formula 
with the rest term of the Cauchy type. 

1. B E R N O U L L I - T A Y L O R FORMULA 

In [2] O.V. Viskov presents another form of the Bernoulli-Taylor formula with the rest 
term of the Cauchy type. For that he uses Graves-Heisenberg-Weil (GHW) algebra 
generators p and q such that: 

(1) \p,q]=pq-qp=l 

where 1 is identity operator. Using (1) and the induction one may prove the following 
identity: 

(2) pr=Pnq + nqn-1(n=l,2,...). 

Now consider the obvious identity: 
n 

(3) Yl(ak ~ afc+1) = a ° ~ an+1* 
fc=0 

Under the substitution 
~fc—I ~fc 

(4) a0 = 0, ak = ( - i ) - ± _ L - . k = 1,2,... 

and using (2) one can get from (3): 

,-x , f H _ (-g)y+1 

fc=0 

what is Bernoulli identity (see Viskov [2]). 

E x a m p l e 1.1. Let p and q be as below: 

P = D = —, q = x-y, 2/GF(R,C). 

where 
xf(x) = xf(x) 
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for sufficiently smooth function / : F —> F. 
After substitution into Bernoulli identity and application to function / as above we 
get: 

fc=0 

Now after integration Jx dt we get: 

what is well known Bernoulli-Taylor formula with the rest term of the Cauchy type. 

2. fy,-UMBRAL CALCULUS 

Now we shall present some definitions and theorems of dy,-umbral calculus. One can 
find more of them in [3], [6], [7]. 

We shall denote by P the algebra of polynomials over the field F of characteristic 
zero. Let us consider a one parameter family T of sequences. Then # is called 
admissible if ^ G T. Where: 

^ = { t f :RD[a,&]; q~ [a, b] : *(g) : Z -> F; *0fa) = 1, 

ttn(<7)^0, *-„($) = 0, n e N } . 

Now let us to introduce the ^-notation: 

r^ = *»-i (g)*n 1 te); 

n^! = n^(n - 1)^ • • • 2^,1^ = ^ r
n

1(^), 

n~ = n^(n - 1)^ • • • (n - k + 1)^, 

n \ n ,̂ 0 
0 0 A; 

exM2/} = E | j 
fc=o **" 

Definition 2.1. Le£ <9̂  : P —» P and 9 ,̂xn = n^xn~l; d^-linearly extended is called 
the \P-derivative. 

Definition 2.2. The x^-operator (d^-multiplication operator) is the linear map such 
that 

x^xn = n + * x
n + 1 n > 0 . 

(n +1)^ 

Note that [dj,,x$\ = 1. 

Let us to introduce ^-multiplication *,/, of functions as specified below: 
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Definition 2.3. 

(6) xHxn = x4xn)= ^ ^ xn+l n > 0 , 
(n + 1J^ 

(7) 
(n +1)! 

xn *„, x = x%(x) = (

v

n + 1 ) ^ n + 1 n > 0. 

Therefore 

(8) x *-/, a l = a l *^ x = a *^ x 

and 
f(x) *v, xn = F(xj,)xn. 

Note 2.1. For k 7- n, xn *,/, xfc 7- xfc *̂ , xn as well as xn *^ xk 7-- xn+fc - in general i.e. 
for arbitrary admissible ^ . 

Definition 2.4. Let ws to define *^-powers of x according to: 

(9) xn*+ =x*t x(n-1)+* = x+(xln-l)*) = x*lPx*^"-*^x= —}x
n; n > 0. 

Note 2.2. Note that 

xn** *,A xfc** = — x(n+fc)** 9- — x ( n + 1W = xk*+ *j, xn*+ 
n^! k^\ 

for k 7- n and x0*^ = 1. 

This noncommutative ^-multiplication *,/, is devised so as to ensure the following 
observations: 

Observation 2.1. Let f,g be formal series. Then: 

(a) d^x71** = n x ( n - 1 W ; n > 0; 
(b) exp^ax] = expax^l; 
(c) exp[ax] *^, exp ,̂ fix^l = exp ,̂ [a + /3]x-/,l; 
(d) fy(xfc *v, xn**) = (Dxk) *4 xn** + xk ^ (drpxn**); 
(e) 9v,(/ *v> g) = (IV) *•/> 9 + / *v (^g)i (^-Leibnitz rule); 
(0 f{^)g(x^)l = f(x) *v, <?; <?(*) = g(x^)l. 

3. ^-INTEGRATION 

Now let us to define ^-integration which is a right inverse operation to ^-derivative, 
i.e. 

I dфt = id. 

Note that d^ = h^do where h^xn = (n + l)v>-cn; n > 1 and 9oXn = xn *; in general 
(dof)(x)=l-(f(x)-f(0)). 

Definition 3.1. We define \J/-integral as a linear operator such that 

(10, / ^ . [ ^ K , * , ^ ^ , , ^ ^ , „>0 

for x as in Example 1.1. 



130 EWAKROT 

Note 3.1. Also note that : 

(11) d+o f f{t)d+t = f{x) 
Jot 

and 

(12) fX(dff)(t)d^t = f(x)-f(a) 
Jot 

for every formal series / . 

Observation 3.1. The following formula for integration "per partes" holds: 
rP rP 

/ {fHd*9){x)dipx = [{f*4,g){x)]a'- {{Df) ^ g){x)d^x. 
Jot J Ot 

4. C^-BERNOULLI-TAYLOR FORMULA 

Let us to return to Bernoulli identity 

p., t±idpt.i=Sp.. 
v ' f-' k\ n! 

k=0 

Now let p and q be as below: 

(14) V = drl), q = z-i/j = xxf,-y, yeF. 

Note that d^,z^ = id. After submission into (13) we get: 
M_, . y ^ ( y - - * ) * ( - $ / ) ( » ) (y-£*)n(d;+1f)(x) 
(15) d*{-< k\ = n\ • 

k=0 

Using (6)-(9) one can get equivalent identity: 
, _ „ ^(v-x)^^(^f)(x) (y-xr**t(d;+lf)(x) 
( 1 6 ) ^ E jfcj = nl • 

k=0 

After integration Jx d^x using (11),(12) it gives 9,/,-Bernoulli-Taylor formula of the 
form: 

(17) f{x) = j ^ ±(x - a)W H ( ^ / ) ( a ) + K + 1(X) 

with the rest term of the Cauchy type of the form: 

(is) Rn+1(x) = ± f(x - tr* ** (a;+1/)(t) <ht. 

Remark 4.1. In [1] is presented special case of (17),(18) which is 9q-Bernoulli-Taylor 
formula of the form: 

(19) f(x) = £ i ( x - a)k*< *, (%f)(a) + fl..+i(-0 
k=0 

with 

(20) Rr,+1(x) = i £(x - tr< *q (d^+lf)(t) dqt, 
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where 

(21) (Ш--|íf 
and one can get it by the choice щ = nq = \Ą-qĄ Һ q71'1. 
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