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HIGHER REIDEMEISTER TORSIO.N 
AND PARAMETRIZED MORSE THEORY 

BY 

JOHN R. KLEIN 
Universitat Siegen 

FB 6/Mathematik V, W-5900 Siegen, Germany 

0. Introduction. This paper constitutes a summary of the author's Ph.D. thesis [K]. 
Proofs of the results cited here will appear elswhere. The first section is devoted to 
outlining a means of passing in a continuous way from the space of pairs (M, 0, where M 
is a compact smooth manifold and f is a Morse function on M, into a moduli space for finite 
cell complexes. 

In section two the results of section one are applied in special instances to construct a 
new invariant which is a parametrized analogue of Reidemeister torsion. This invariant 
takes values in a certain subquotient of higher algebraic K-groups of the complex numbers. 

1. Manifold bundles and families of cell complexes. Suppose p.E —•* B is a bundle 

over a finite CW complex having compact smooth manifold fibres. Consider a continuous 

function f on E whose restriction to each fibre of p is a smooth function with no degenerate 

critical points. Then f is a family of Morse functions parametrized by points of B.1 In 

the unparametrized case, that is, when B is a point, a classical procedure [M] shows how to 

construct from f a finite cell complex Y having the homotopy type of E, in which the 

number of cells of Y is equal to the number of critical points of f. 

However, the usual method of assigning the cell complex Y to the function f is 
ambiguous unless extra data is chosen (e.g. a Riemannian metric, local coordinates, 
deformation retractions etc.). It would therefore be natural to ask whether or not the set of 
cell complexes associated with a given Morse function forms a contractible space. 
Unfortunately, this is not true for the standard construction [M], 

By a different, coordinate free approach we prove, 

It is not always true that such a function always exists on a given bundle p:E —• B. A necessary, but not 

sufficient obstruction when B is simply connected is that there should be a section of p. 



16 KLEIN R. JOHN 

Theorem A. If N is a smooth manfold and f:N —> R is a Morse function, then there is 

a contractible space C(0 which is intrinsically defined in terms of N and f and which has 

the property that each point of C(0 uniquely determines a cell complex Y arising from 

f:N—• R. 

Now consider the case when B is any finite CW complex. We address the question of 

whether it is possible or not to naturally associate to a manifold bundle p:E —• B together 

with a fibre-wise Morse function f:E —> R, a bundle of cell complexes parametrized by 

points of B. By this, we mean a fibfation rc:Y —* B such that for each b e B the fibre Y^ = 

K~l(b) has the structure of a finite cell complex in such a way that the attaching maps for 

the cells of Y^ vary continuously with respect to b e B. By the theory of classifying 

spaces, it turns out that it is sufficient to answer this question in the universal case, i.e., 

for the bundle, 

pu:(EGxTO(N))xGN—> B ^ G , 

where N is the fibre over the basepoint of p, G Q Diff(N) is a group of diffeomorphisms, 

EG is a free, contractable G-space, 5K(N) is the space of Morse functions on N (with the 

Whitney C°° topology), and B ^ G denotes the Borel construction EGx 5R(N). Note that 

this bundle is equipped with a universal fibre-wise Morse function fu defined by fu((x,0,n) 

= f(n). Consequently, the space B ^ G may be viewed as a classifying space for bundles 

with Morse functions. A positive answer is then provided by the following: 

Theorem B. There is a space BCG and a forgetful map F:BCG —* B ^ G such that 

(i) F is a weak homotopy equivalence, and 

(ii) each point b e BCG with F(b) = (x,0 e EGxG3ft(N) = B ^ G determines a cell 

complex Y5 associated to the Morse function f:N —* R, and furthermore, Y^ varies 

continuously with respect to b e BCG. 

The importance of theorem B is spelled out in the following corollary; 
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Corollary. If f:E —> E is a fibre-wise Morse function on a manifold bundle p:E —> B, 

then it is always possible to perturb f by ^homotopy to yield a fibre-wise Morse function g 

on p:E —* B having the property that there exists a parametrized family of cell complexes 

q:Y —» B which is associated to g. 

We sketch a rough outline of the proof of theorem B. The proof involves constructing 

a G-space C(N), together with a natural G-equivariant map h:C(N) —* 9ft (N) which is 

also a weak equivalence, such that the points of C(N) determine cell complexes. We may 

then set BCG equal to the Borel contruction EGX
GC(N). One might a priori guess that 

C(N) is constructed in a sheaf-like manner from the space of Morse functions 9R (N) by 

defining the stalk of h over a Morse function f to be the space C(0 of theorem A. 

However, the assignment f •—* C(0 unfortunately has the property that the cell complexes 

in C(0 do not necessarily vary continuously with respect to the parameter f e 9ft(N). The 

reason for the discontinuity is that cell complexes in C(0 arise in part by choosing a set of 

regular values rj , . . - . ,^ of f that separate the collection of critical values (these define level 

surfaces in N which separate the critical points). If ft is a family of Morse functions, it is 

possible that the number of distinct critical values of ft is different for different t. Hence the 

critical values may pass through each other. Consequently, it might not be possible to 

choose a continuously varying set of regular values rj(t),...,rjc(t) that separate the critical 

values of ft. 

To resolve the discontinuity problem, Igusa's stratification theorem [L,; chapter III] is 

applied to the space 5R(N). Let y:?Dt(N) —* N be the function which assigns to a Morse 

function f the difference between its number of critical points and its number of critical 

values. Then \\f defines a stratification of 5ft (N) by setting 9ft(N)(i) = Vj/'^i). It is not 

difficult to see that the assignment f •—> C(0 varies continuously if we remain inside a 

single stratum, for, within a connected component of a stratum, the relative arrangement of 

the critical values of functions is fixed. In essence, the idea then is to modify the definition 

of C(0 so that the cell complexes vary continuously within the closure of a stratum in 

3ft(N), and to then apply the stratification theorem to glue all of the strata together. 

For a function f in the closure of a particular stratum, the aforesaid modification of C(0 

is obtained by generalizing the concept of level surface. We choose a collection of oriented 
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hypersurfaces Ha having the following properties: 

(i) The H are transverse to the 1-form df, 
a 

(ii) The Ha partition the critical points into subsets so that if f is in the stratum itself, 

then the Ha separate critical points having different critical heights. 

(iii) If f is in the boundary of a stratum (3, we require that the hypersurfaces H a are 

chosen in such a way that a perturbation ft of f into the interior of S can be extended to 

a perturbation Ha(t) of hypersurfaces satisfying the condition that Ha(t) separates the 

critical heights of ft. 

2. Higher Reidemeister torsions. My interest in associating families of cell complexes 

to bundles with fibre-wise Morse function arises from the problem of defining a 

parametrized analogue of the classical R-torsion invariant of Franz, Reidemeister, and de 

Rham. This question was first raised by Wagoner [Wa].2 

Let p:7C —> Ur(C) be a unitary representation of the fundamental group of a manifold 

M. We assume that the homology of M in the local system defined by p is entirely 

vanishing; we then say that M is acyclic with respect to p (cf. [Wa]). It is in this context 

that the classical R-torsion is defined, and it lives in a certain quotient of the first algebraic 

K-group of (C. 

Let kp be the kernel of p and set 7Cp = 7c/k . Let M(7Cp) denote the infinite monomial 

matrices with coefficients in 7Cp. Then M(7Cp) is a subgroup of the stabilized general linear 

group GL((E) = HmGLnXCE). Taking classifying spaces and then plus constructions, we get 

a map BM(7Cp)
+ —* BGL((C)+. Let WhPi+1((E) denote the i^-homotopy group of the 

homotopy fibre this map. For i = 0, WhPi+i((E) is precisely the group in which the 

classical R-torsion lives. 

Now suppose that a smooth manifold bundle p:E —• B is given whose fibres are p-

acyclic. We assume the structure group of p has the property that its action on the fibres of 

p are basepoint preserving and furthermore has the property that the induced action on 

fundamental groups is trivial. Suppose that a fibre-wise Morse function f on p is given. 

Choose a Riemannian structure on the fibres of p. If b e B, let fb:E^ —> R denote the 

2 
Wagoner also provides a solution to this problem in the 1-parameter case. 
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restriction of f to the fibre of p over b. By a framing (J)b for f at a point b £ B, we mean 

an orthonormal framing for the negative eigenspace of D2fb along the singularities of fb. 

We shall say that (f,<|>) is a framed fibre-wise Morse function on p:E —> B if a framing <j)b 

for fD at every point b e B is given which varies continuously with respect to the parameter 

space B.3 

Consider the case of a p-acyclic bundle over the n-sphere: p:E —> Sn. Suppose a 

framed fibre-wise Morse function (f,<|)) is given on p. 

Theorem C. (Higher R-torsion for framed fibre-wise Morse functions). The triple (p,f,<))) 

determines a well defined element TP(p,f,<()) e WhPn+1 ((E). 

The proof of theorem C is deduced from theorem B together with a construction called 

linearization which allows one to pass from an n-parameter family of cell complexes to an 

element of the group WhPn+1((C). In the unparametrized case n = 0, this construction 

coincides with the usual construction of the R-torsion from the cellular chain complex 

associated to the Morse function f (assuming that f is self indexing). 

3. Reidemeister torsions for all p-acyclic bundles. A still unsettled question is 

whether it is possible to define invariants TP for all p-acyclic manifold bundles over the n-

sphere. I will briefly mention how one might accomplish this. Let 9Rfr(N) denote the 

space of framed Morse functions on N with the Whitney C°° topology. Then 5Kfr(N) is a 

G-space where G is the group of diffeomorphisms of N which preserve the base-point and 

which induce the identity on fundamental groups. The proof of theorem C above follows 
wfr 

from the construction of a homomorphism TP.7tn(B
 M G) —• WhPn+1(C). Consequently, 

higher R-torsions can be defined for all bundles over spheres if TP can be extended to 

7Tn(BG). Let 2(N) be the space of framed functions on N, i.e., functions having only 

Morse and birth-death singularities together with framings of their critical points ([I,]). 

Igusa's framed function theorem says that 2(N) has connectivity equal to dim(N) - 1. 

Using the G-action on 2(N) defined by precomposition, form the Borel construction B2G 

= EGxG2(N). Then BTO G is a subspace of B2G, and the forgetful map B2G —> BG has 
In terms of cell complexes, a framed function defines an explicit Euclidean coordinatization of the cells. 



20 -KLEIN R. JOHN 

o . connectivity > dim(N). Suppose that xP can be extended to 7Tn(B~G). If the dimension of 

N is made large by replacing N with N * Dk for k » n (stabilization), then the forgetful 

map B2G —» BG becomes highly connected and therefore xP is extendable to rcn(BG) 

for all n. In order to construct an extension of xP to 7Tn(B
sG), it would be. sufficient to 

show how a bundle p:E —> B with fibre-wise framed function (f,<t>) gives rise to a family 

of cell complexes q:Y —• B, where it is now necessary to include Whitehead elementary 

collapses and elementary expansions in the transition between the fibres of p:E —> B, as 

is reflected by the existence of birth-death singularities in the fibre-wise restrictions of f. In 

a future paper with K. Igusa [I-K], this program will be undertaken/ 

4. A remark on the machinery employed. The proofs in [K] apply the language of 

Waldhausen's theory of categories with cofibrations and weak equivalences [W], which 

enlarges the class of categories for which one can define K-theory. We use a particular 

model of Waldhausen's of algebraic K-theory of a space called the expansion space, 

which is a type of moduli space for cell complexes [I-W]. The primary issue in the proof 

of theorem C is to pass continuously from the moduli space of Manifold, framed Morse 

function pairs (i.e. B ^ rG) into the expansion space. We then show how to linearize from 

the expansion space into the algebraic K-theory of the complex numbers. The higher R-

torsion is, by definition, the composition of these two constructions. 
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^added remark: K. Igusa and I have recently shown by other methods 
how define higher torsion invariants for allo-acyclic manifold 
bundles. J 
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