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1989 ACTA UNIVERSITATIS CAROLINAE—MATHEMATICA ET PHYSICA VOL. 30. NO. 2 

On Superpositionally Measurable Multifunctions 

ANDRZEJ SPAKOWSKI 

Opole*) 

Received 15 March 1989 

We prove a theorem on measurability of the superposition F(t, G(0), where Fis a Caratheodory 
multifunction and G is a measurable one. 

1. Introduction 

The problem of measurability of the superposition F(t9 G(t)) arise in many situa­
tions, lately in the study of differential inclusions and random differential inclusions 
(see e.g. [3, 6]). 

The classical result on superpositional measurability is due to Caratheodory [4] 
and states the following: Let T be an arbitrary measurable space, X SL separable 
metric space and Fa metric space. If/: T x X -> Fis a Caratheodory function, i.e. 
measurable in the first variable and continuous in the second one, then for every 
measurable function x: T-> X9 the superposition f(t9 x(t)) is a measurable function. 
There are some results of this type for multifunctions, see [9, 3,13, 2, 6, 8]. For 
other references see the survey paper [1] by Appell. 

Now, we recall some definitions from the multifunctions theory. Throughout 
this note let (T, S) be a measurable space and X9 Y be two metric spaces. Denote 
by 2X and 2Y the families of all nonempty subsets of X and Y9 respectively. A multi­
function G: T-> 2X is said to be mesurable if for every open A a X the set G~1(A) = 
= {teT. G(t) n A 4= 0} e Z. Note that measurability of G is equivalent to the 
measurability of G, where G(t) = G(f) for t e T. 

A multifunction H: X -> 2Y is said to be continuous if it is both lower and upper 
semicontinuous. Lower (upper) semicontinuity of H means that for every open 
Be Y the set {xeX: H(x) n B # 0} ({xeX: H(x) c B}) is open in X. 

We say that a multifunction F: T x X -> 2Y is a Caratheodory multifunction if 
for every xeX the multifunction F(",x) is measurable, and for every teT the 
multifunction F(t9 •) is continuous. 

In the next section we will prove the following theorem which generalize Caljuk's 
result [3]. 
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Theorem. Let X be complete and separable and F: T x X -> 2Y be a Caratheodory 
multifunction with relatively compact values. Then for every measurable multi­
function G:T->2X the superposition F(t, G(t)) is a measurable multifunction, 
where F(t, G(t)) is the sum of sets F(t, x) over x e G(t). 

2. Proof of the theorem 

Our first step is a reduction of the problem to the measurability of the super­
position F(t, x(t)), where x is an arbitrary measurable function from Tto X. Indeed, 
let (gn) be a Castaing representation of the multifunction G (see [12, Theorem 4.2] 
of [7, Corollary 2.2]), and observe that the lower semicontinuity of F(t, •) implies 
that 

{te T: F(t, G(t))nA * 0} = {te T: F(t,G(t))nA 4= 0} = 

= \J{teT:F(t,gn(t))nA*0} 
n 

for every open A c Y. 
Let x : T - > I be an arbitrary measurable function. Since X is separable there 

exists a sequence (xn) of measurable simple functions which converges pointwise 
to x([5, p. 61]). The superpositions F(t, xn(t)) are measurable multifunctions because 

{t e T: F(t, xn(t)) n A * 0} = (J {te T: xn(t) = a and F(t, a) n A + 0} 
a 

for every open A c Y, and the sum over a is finite. 
In view of [11, Theorem 4.7] it is sufficient to prove that the sequence (F(t, xn(t))) 

converges (with respect to the Hausdorff metric) to the compact set F(t, x(t)). 
However, the convergence follows from the continuity of the multifunction F(t, •). 

3. Concluding remarks 

Another version of the theorem can be formulated. Namely, if X is separable 
(not necessarily complete) and the values of G are complete subsets of X then the 
superposition F(t, G(t)) is a measurable multifunction too. 

Bocsan [2] (see also [10]) consider the following condition (c): There exists 
a Castaing representation (gn) of G: T-> 2X such that the superpositions f(t, gn(t)) 
are measurable functions, where f:TxX-*Y. He remarked that this condition 
holds provided X is separable, / is a Caratheodory function and G is a measurable 
and complete valued multifunction (see [10, Proposition 2]). In other words: the 
superposition f(t, G(t)) is measurable provided X is separable, / a Caratheodory 
function and G a measurable and complete valued multifunction. 

The following two examples show that the assumptions on lower and upper semi-
continuity in the theorem of section 1 cannot be omitted. 
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Example 1. Let E c R be non-Lebesgue measurable. Define F: R x R -> 2^ as 
follows: F(t, x) = {0,1} if x =f= t, F(t, x) = {0} if x = t and t e E, and F(t, x) = {1} 
if x = t and t $ E. The multifunctions F(t, •) are lower semicontinuous but not upper 
semicontinuous. The multifunctions F(*,x) are measurable. However, the multi­
function F(t, t) is not measurable. 

Example 2. Let E be as above and F be defined as follows: F(t, x) = {0} if x =# t, 
F(t, x) = (0,1} if x = t and t e E, and F(t, x) = [0, 1] if x = t and f £ £. The 
multifunctions F(*> •) are upper semicontinuous but not lower semicontinuous. The 
multifunctions F(% x) are measurable but the multifunction F(t, t) is not measurable. 
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