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A CLASS OF BANACH LATTICES AND POSITIVE OPERATORS 

RYSZART) GRZ.4SLEWICZ 

By an operator we mean a bounded linear transformation . 

Let B be a real Banach lattice. A set of all positive operators 

mapping B into 3 is denoted by JL+(B) i.e. Te JL+(B) if 

and only if Tx^O for all x>0 . We say that a 3anach lattice 

B has the property W if the isometric domain 

MIT) * ,[ xe B : ITxl= « Til U xll j 

is a linear subspace of B for all T e J0+(B). 

In [1] it was shown that Lp-spaces , 1<p<«> , have the 

property W . The proof of this result is based on properties of 

doubly stochastic operators established by Ryff [4l ,f5] . In the 

class of Orlicz spaces LMR) (with <J>: K¥ —> R+ strictly convex 

and* ^10) -0 ) f equipped with-the Minkowski norm only Lp-spaces 

have the property W (see [2]). In view of the above facts, it 

would be interesting to know whether there exist spaces which are 

not L^-spaces and which have the property W . 

In this note we give an example of a two dimensional Orlicz 

space with the property W , which is not an 1 -space . Next we 

consider other properties of the two-dimensional Banach lattice 

with the property W . 

Theorem 1. Let B be a Banach lattice with the property W. 

Then B is strictly convex. 

Proof. To get a contradiction suppose that B is not strictly 

convex. Then there exist distinct positive vectors u^ t u2 such 

that || a u1 + M~a> u2 if * 1 for all ae[0,l]. Let f 6 B* be 

such that II flU f (uT + u2) /2 =1 . Then f ( u ^ f (u2> -1. 

Obviously f+ (u-^-sf+l^) = II f II =- 1 . Now consider the operator 

T defined by Tx = x0 f+(x) , where x0 eB %& a fixed 

vector, x 0>o , Hx 0Ml. We have u,. ,u2 6 MIT) and ut--ti 4
 M W » so 

M(T) is not a linear space.This contradiction proves our Theorem. 

This paper is in final form and no version of it will be submitted for publication elsewhere. 
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The two-dimensional case. 

p 
Example. Let B 0 denote R^ , eotiipped with the norm 

ttíx,y>\\ = "y^2 + ixyl + y2 

(xfy) 6 R
2
 # Obviously B is not an lp-space. Note that B 0 is 

an Orlicz space with the Minkowski norm 

where 

d(x,y)l+- inf[et : 4>(|x/*|) + ^,A\\ < 1 J 

*2±JLi__ [ 2+1 - ^4-3t
2 ] for Oít^iLT 

фlt) = 3 

Í I J Q L , , j - _ i _ t „ t ) c 

It should be pointed out that each two-dimensional Banach.lattice 
with the norm satisfying l|(xfy)H =Icy,x)ll ds an Orlicz space,with 
the Minkowski norm. This description does, not extend to 
3-dimensional spaces (see [3]). 

Let T - V J e ̂ ( B 0 ) , that is a,b,c,d > 0 . We claim 

that 'iy(T) is a lirear subspace of B 0 . We may and do assume that 

UT|=1. If M(T) has exactly one linearly independent vector, then 

MlT) is obviously a linear subspace. Thus we need to show that, if 

there are two linearly independent vectors in M(T), say (x-j fy ) f 
(xz,y2) , then T is an isometry. We have 1 T((x,y))|p 4 lUxfy> It

2 . 

T h U S A x2 + B |xyt + C y2 < x2 + \xy\ + y2 

2 >> 2 

where A^-a^+ac +c f B-2ab+ad+bc+2cd f C=-b +bd+d f and the 

equality holds for (x^y^) , {x^^y^ .It is not hard to see 

that this implies A»B*C»1 . Therefore a2b2 + c2d2 + (a2+c2)bd+ 

(b^d^)ac + 3abcd=(B2- AC)/3 =0 .Since a,bfcfd»0 and A*-C-*1 we 
obtain a=-d=1 ,b=c=0 or a=-d=0 , b=c=1 , i.e. T is an 
isometry . Therefore B 0 has the property W . 

Remark. Let B have the property W and dim B=2. Let T€ X (B) be 
such tha t T~1 € JL+(B) .Then e i t h e r T/|iT(i i s anj isometry or 
e l se the re e x i s t s exact ly one x 0 such tha t x 0 > 0 , iix0iU1 and 

liTxoll * inf{iTxl : x O , i x i i » l j 
Indeed,suppose tna t T i s not an isometry • Then T~ i s not an 
isometry and dim M(T*1)*1. Let 0 £ yQ 6 M(T~1) . The vec tor 
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xo = T"*1(vo) / H T~1Cy0)1 satisfies the above equality . 

Theorem 2, Let (R2
f Hi) havs ttye property W and let 11(1 fO)IUl|( 0,1)' 

Then I/ (x,y)H =l|iy,X)II for all x,y eR . 

0 2-al 
Proof. Consider the operator T^ 

a 
. We claim that T a is a 0 

an isometry for some a e[o,2] . To get a contradiction suppose 
that dim M(Ta) =1 for all a € [ 0 , 2 ] . Put 

e , = ( cos «i , s i n t**) / # ^ /IKcosoi, , s i n^ )H 

dL€ [0, *3t/2] . We can define a function f: [0,2] —> [ o , * / 2 l 

such that e f l a ) 6 ^ T
a * • B v fcbe Remark for each a 6(0,2) we 

can find a unique g(a) € [c , T^/2] such that l^Ta eg ( a ) \U 

= inf [ |T a x II : Ilx« = l] , and we put g(0)=-0 f 

g(2) * V 2 . 
I t i s not hard to see that the functions f and g are continuous. 

Moreover t{Q)~ ^/2 and f(2)-0 . 3y the Darboux property of the 

continuous function f-̂  on [0,2^ there exists a0 such that 

f(a0>= gta0) . We have 

ttT eg(a0)« = i n f [ »T a o X« ; l ix iU l } 4 sup { ft T ^ x || : l x * » l } H lTe f ( a J I 

Thus Tao /»Taott i s an isometry. Hence | lTa c( U ,0))« .-. lTa0Uc f1))l 

and a0 / l|Taol| «• ( 2~aG) / B Ta II *1 , so II TSQW ra0=1 . 

Th^i-Pfore l | (x ,y ) l l » | TaQ( ( x , y ) ) « « l l ( y , x ) l l . 

Proposition. Suppose (R2, I- ll) has the property W. Then positive 
isometries are exactly the operators of the form 

lìî] or i?a 
Proof. In view of Theorem 2 the operators having the above form 

are isometries. la b l 
Now assume that T » c & J f where a,b.c.d ^ 0 . i s an 

laometry. Then IIT ((1,~1))H = It (ta-bl , lc~dl)ti $ H (a*bf c+d)ft=-HT ftlti))l 

• ttT (<1 f-1))ll . Thus la-bi « a+b and tc-dl*C4-d f so ab=cd=0 f 

which completes the proof. 

Theorem 3. Let 3 beatwo-dimensional space with fhe property W and 
suppose B* is strictly convex. Then B* has the 
property W-

Proof. Let T € XlB11) and HTI-*1 . We need to show that if there 
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exist two linearly independent vectors ,say v-j ,V2 » ^n MIT) 

then T is an isometry. Since B and B* are strictly convex, 

there exists a one-to-one correspondence B X3U* — > u e B such 
*> 

that < U , U * > = B U U ttux» ant> Sull =\\u*\\ . Thus we have |Iv* II = 

BTv*|| - <Tv* f(Tv?) *> = <v*f T*( Tvf)*> and (Tv*) * 6 M(T*j, 

i=1,2 ; also (Tv?)* { (Tv*}* . Since B has the property W 

and (Tv*) , (TV2) are linearly independent , the operator 

Tx€Xte*) is an isometry. Therefore,by Proposition ; T is also 

an isometry ,which completes the proof . 

Problems. Characterize the Banach latticed with the property W 

In particular describe the normsMon R such that (R ,ll-|) 

has the property W . 

Can the strict convexity of B be omitted in the 

assumption of Theorem 3 ? 
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