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EXTREME POINTS IN SPACES OF OPERATORS AND VECTOR-VALUED MEASUREb 

Dirk Werner 

J • Jntroduct-. or. 

If onp wants to pnvc 'rhot en operator T acting between Banach 

spaces X and Y is an extreme operator, that is an extreme 

point of the unit ball of the space of bounded linear operators 

L(X,Y), it suffices to check that T" (the adjoint of T) maps 

extreme functionals on Y onto extreme functionals on X. An 

operator with this property is called a nice operator [ B] . It is 

even enough that T' maps a weak*-dense subset of ex Byl into 

ex B , , but this is not a substantial generalization. (B7 denotes 

the unit ball of a Banach space Z, ex C the set of extreme 

points of a convex set C.) 

Consider some examples: 

1. The identity operator id: X-»X is always a nice, hence 

extreme operator. Using this and the canonical isometry 

between L(x,X") and L(X'-X') one can easily see that trie 

natural injection iv: X-*X" is always extreme. 
A 

2. To see that there are non-nice extreme operators consider the 

injection opeiucor from 1 into 1P (1 «- p * °°). Moreover, no 

operator from some space L (M.) into some space L {y) (p 'tis 

above) is nice, but B. r. 1 . p-v is compact with respect to the 

weak*-operator topology so that there are many extreme operators, 

3. A fairly easy description of nice operators is possible in the 

setting of spaces of continuous functions. The main tool here 

is to represent operators into CL (L a compact Hausdorff 

space) as vector-valued functions. If 'X is a Banach space, we 

associate with an operator from X into CL a function frojn 

L into X1 in the following way: T»->T*, T*(l): --S^T, This 

mapping induces an isometric isomorphism between L(X,CL) and 

the space of weak*-continuou3 .functions C ^ X 1 (weak*)) and 

between the space of cbmpact operators K(X,CL) and the space 

C(L,Xf) of norm-Continuous functions [?, p.490] . 

This paper is in final form and no version of it will be submitted for publication elsewhere. 



136 DIRK WERNER 

Now, TeL(x,CL) is nice if and only if the representing 

function assumes only extremal values: T*(L)s ex B ,. More can 
x 

be said if x - CK. TeL(CK,CL) is nice if and only if T has 

the form Tf -.A • f©y with y : L-> K continuous, 9i E CL with 

modulus one. Equivalently, T is nice if and only if T is 

essentially multiplicative (Tf-Tg - TVT(fg)). 

As we pointed out before, in general it is not necessary for an 

extreme operator to be"'nice. In the case of operators between CK-

spaces, however, the situation is much more involved. Several 

authors have treated the question if an extreme operator T from 

CK into CL is necessarily nice, cf. [3j ,[ 4] , [a") , [9| , -11] . Although 

a variety of properties of K, L or T is known that ensure, that 

T is nice (e.g. K metrizable, real scalers; or L extremally dis

connected, no matter if the scalars are real or Cfomplex), the general 

answer is no since Sharir has constructed counterexamplrs Loth for 

the real and complex case [l2j , [l3] . 

All these results may be translated into results concrrnjr.n mtasurr. 

valued functions, thanks to the isometry Ti-> V'. In this paper VF 

shall-consider operators from C(K,E) to C(L), vhere >" is a 

"tencr.h space. Cy Sanger's theorem, the dual of C(K,t) may l-.r, 

thought of es the specc f/(K,Ef) of Er-valued regular Corel 

mcFsurer, oT f in: tc variation, equipnrd vith the tote.l variation 

norm, cf. 15 , ^\C.-. or Qc] . Thus, \\F shall investigate functions on 

L the values of which are vector measures. The most far-reaching 

results can bt. ottained for compact operators, represented by 

elements of C(L,M(K,E•)). As it turns out, the proofs work for the 

space C(L,M(K,Z)) , too, when Z is not a'dual Danach space. 

Throughout, X, Y, Z, E denote Banach spaces, K, L denote compact 

Hausdorff spaces. The results apply to real as well as complex Banach 

spaces. 

2, Characterization of extreme points. 

Proposition 1: Let T be an extreme point of the unit ball of 

K(C(K,E).,CL). Then, for leL, F*(l) is a point measure with 

norm one: T*(l) « p<&£k, peE' with norm one. 

The case E * scalars has been settled in [a]. Proposition 1 is a 

consequence of the following result. 
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Proposition 1*; Let f be an extreme point of the unit ball of 

C(L,M(K,Z]). Then, for leL, f(l) is a point measure with 

norm one. 

Proof: First of all ||f(l)||- 1 since f(l)+( 1-||f(l)||)m lie in the 

unit ball of M(K,Z) whenever |m||41. Next, consider the function 

F: L ^ M ( K ) , F(l):«|f(l)|. Since || jm^ - jm̂ J || £ || m r m 2 | for 

vector measures m. of bounded variation, F is a norm-continuous 

function which has probability measures as values. We claim: 

F e ex {g g e C(L,'MK), all g(l) are probability measures}. 

Once this claim is established, we finish the proof as follows. 

F defines an operator S: CK-»CL by (Sf)(l):« J y d(F(l)), of 

course S* • F. If F is extreme, S, too, is extreme and positive. 

By a result du^ to Phelps [^JS is nice, that means F(l) is a 

point measure. It follows that f(l) is a point measure. 

To prove the claim let u: L-*M(K) be a continuous function such 

that F(l)+u(l)>0 and (F(l)+u(l))(K) « 1 for all leL. 

In this case u(l) is absolutely continuous with respect to F(l) 

so that there is a Borel function h.. with u(l)«h.-F(l). We may 

(and shall) assume that h- is real-valued and -1 £ h., (k) £ 1 for 

all keK. Let m(l): .hy f(l) e M(K,Z). Then (a) l»-*m(l) is 

continuous, and (b) ||f(l)+m(l)||i 1 for all I E L . We conclude that 

m »0 and consequently u«0. 

It remains to prove (a) and (b). 

(a) |m(l) - « ( l ' ) | | - | | h 1 . f ( l ) - h l t . f ( l . ) | j 

i | | h 1 ( f ( i ) - f ( i ' ) ) | | + | | (h 1 -h l t )rCi - ) | | 

The f i r s t term - J j h j d | f ( l ) - f ( l" ) j [6, p.173| 

- | | f ( D - f ( l ' ) | | • 
The second term - J Ihj-hjJ dF(l ' ) [6, p . 173) 

- JA . . . + J B . . . 
with A:-{k|k eK, hjfk)* hj.fk)} , B:-K\A. 

Now JA . . . - J"A hx dF( l ' ) - JA h l t dF( l ' ) 

- JA hj dF(l) - JA h-,, dF( l ' ) + JA ha d (F ( l ' ) -F ( l 

i | u ( l ) - u ( l ' ) | ( A ) + |F(3) - F ( 1 ' ) | ( A ) . 

B may be treated analogously so that 

||m(l) - m(l') | | i | | f ( l ) - f ( l ' ) | + | u ( l ) - u ( l ' ) | | + ||F(1) - F ( l ' ) | | 

Therefore m(.) i s continuous. 

(b) ||f(l) + m(l)|. - l U + h ^ . f d j J 
- i | . l ± h l l <JFfl) [6, P. 173] 
- / fF(l) + J hx dF(l) 
- (F( l ) + u ( l ) ) ( K ) - 1. 
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In order to tackle the problem if an extreme operator from C(K,E) 

into CL is nice we need to know the extreme functionals on C(K,E). 

They wnre first described Dy Singer [14] , but the proofs in the 

literature are quite complicated, cf. also [1?J, Here we shall pre

sent a very simple argument. 

Theorem 2: A vector measure meM(K,Z) is an extreme point of the 

unit ball if and only if m -z® S. for some z E ex B?, k 6 K. 

Proof: Assume m is extreme. If it were not a point measure, the 

total variation measure |m| wouldn't be either. Therefore 

0< |m|(A)-:a< 1 for some Borel set A. Then we can represent m 

as a non-trivial convex combination of norm-one measures: 

m - a (a"1. J m) + (1-a) ((1-a)"1. ̂  c m ) . We infer that m is of the 

form zvi. 9 since m is extreme we have z E ex B.,. k' Z 
On the other hand, if m is as stated, we shall show that it is 

extreme. Indeed, m is extreme in the subspace Z :«{x®$. | x E Zj. 

But Z is a very well complemented subspace, namely, it is the 

range of a projection P satisfying ||n||- ||Pn|| + ||n-Pn| for all 

nE M(K,Z)f a so-called L-projection. Here, Pn:-n({k])®5 defines 

the required projection. It follows easily from the defining norm-

concHtion that ex B- Sex B..rK _>, and m is extreme, 

Specializing to Z-E" we get Singer's theorem on extreme functionals. 

We may state it in the form: Q: C(K,E)-—>E, Qf: - f(k) (kcK fixed, 

but arbitrary) is a nice operator. Looking at the above argument 

we see that the proof used the facts that Q" is an isometric em

bedding and that the polar of Ker Q (that is Z0) is the range of 

an L-projection. A space with this property is called an M-ideal 

Fl],[2]. So we have actually shown: 

Proposition 3: Suppose Q: X—)Y is a quotient map such that Ker Q 

is an M-ideal, Then Q is a nice operator. Moreover, p E ex Byl 

iff Q'p E ex Bx,. 

Note that Proposition 3 includes £5, Theorem 1(b)]. 

It is known that an M-ideal J of a Banach space X satisfies the 

following intersection property IP(n) for each n E N: 

Whenever U M..,U are open balls in X with non-void intersection 

»/ such that J n U 1 + 0 for all i, then J#*U* 0. 

Conversely, if a closed subspace J of X satisfies IP(3), then J 
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is an M-ideal [% Th. 5.9] ,[2, l"h. 2.17]. Alfsen and Effros [lf p.125J 

exhibit an example of a subspace of some 3-dimensional real Banach 

space which fails to be an M-ideal but satisfies IP(2). It is. how

ever, an open problem, whether such an example exists in a complex . 

Banach space [20], Here it is interesting to note that Proposition 3 

holds if Ker Q satisfies the slightly weaker condition of having 

IP(2). This is shown in [18] by means of a direct application of the 

intersection property. 

Proposition 3 can be used to prove the following extension thenrem 

for extreme operators. 

Proposition 4: Suppose Q: X—»Y is a quotient map and that Ker Q 

is an M-ideal of X. If ' S: Y-4CL is an extreme operator, then 

T:~* S°Q: X—>CL is an extreme operator, and T*(l) is extreme 

iff S*(l) is extreme, (Analogously for compact operators.) 

Proof: We have only to show that T is extreme, the other statements 

are proved in Proposition 3, Let || T + UJ|* 1. Then we have 

||Q,(S*(1)) + U*(l)|| 4 1 for all 1 eL. By assumption on Q Q« is 

an isometric isomorphism from Y1 onto W:»(Ker Q) & X1, and there 

is a decomposition X1 -» W S^W with some closed subspace W t* X1 . 

Using this we may write U*(l) «w(l) + w (l) e W O W , and there«-

fore 1 » ||Qf(S*(l)) + w(l)|| + ||wx(l)||. Since S is extreme, a 

theorem due to Sharir [ll] yields 1 -||s*(l)|| - || Q' (S*(l))|| 

on a dense subset H of L. Hence v^fl) =0 on H, equivalently 

U*(H)£W, But U* is weak*-continuous, and W is weak*-closed so 

that U*(L)£W. Thus, for I E L there exists v{l)eY' such that 

U*(l) «Q'(v(l)). Now v is seen to be weak*-continuous, hence v * 0 

and U « 0 because j| 3» (S*(l)) + Q1 (v(l)) || « j|s*(i) + v(l) | 4 1. 

The (easier) proof for compact operators is established in the 

same way. 

Corollary 5: Let S: E—>CL be an extreme operator (resp, extreme 

compact operator). Then for every compact Hausdorff space K 

there exists an extreme operator (resp. extreme compact operator) 

T: C(K,E)—)CL 'ith T*(l) extreme iff S*(l) extreme. 

Proof: Choose any keK and consider Qs C(KfE)-->--i Qfi- f(k). 

Proposition 4 gives the result, the M-ideal property has been 

observed in the proof of Theorem 2, Cf* also t.2, prop* 10.1] , 
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In [3] it is shown that for every compact Hausdorff space L there 

exists a Banach space E and an extreme operator S: E—>CL such 

that S*(l) is extreme if and only if 1 is an isolated point of 

L. If L is the unit interval, E may be chosen to be 4-dimensional, 

The following theorem shows that the space C(K,E) perfectly reflects 

the properties of CK and E as far as the characterization of 

compact extreme operators.into CL is concerned; for merely bounded 

operators we shall need additional assumptions. 

Theorem 6; The following statements are equivalent: 

(a) Every extreme point of the unit ball of K(EfCL) is nice. 

(b) Every extreme point of the unit ball of K(C(K,E)fCL) is 

nice, where K is an arbitrary compact Hausdorff space. 

Proofs That (b) implies (a) is the contents of Corollary 5. Assume 

(a) and let T: C(KfE)—)CL be an extreme point of the unit ball of 

compact operators. By Proposition 1 we have T*(l) • p(l)® o:.*•_ •,, 

Sincr T is norm-continuous, y is locally constant! 

If leL, then ||T*(l) - T*(l')||<1 for lf in some neighbour

hood U of 1. We conclude f(l»)--f(l) for all l»eU. L is 

compact, so there are finitely many pairwise disjoint clopen sets 

L f...fL covering L and k ,,..,k E K with t|/(l)«k. for 

leL,. Now p(,) is seen to be norm-continuous, hence it represents 

a compact operator from E to CL. By assumption (a) we have only 

to show that it is extreme. Let u: L-*Ef be a norm-continuous 

function such that |p(l) + u (1) || £ 1 for all leL. Define 

w(l):«_E It (iV.u(l)cPo Then w is norm-continuous, ||T*(l)+w(l)|| L 1 
""Li K i # "" 

for all 1, and hence w » 0. We infer u « 0, 

A consequence of the above proof is: 

Corollary 7/. If T is an extreme point of the unit ball of 

K(CK,CL), then T is a finite rank operator. 

Proof: We have f*(ij * p(l)* 6̂/--, \ f p«'Mt-CL. As pointed out above, 

there are pairwise disjoint clopen sets L ,...,L covering L and 

k ,...,k eK with ty(l) -k. for 1 t L., It follows 

(Tf)(l) - T*(l)(f) - p(l) f(k1) for l € L i f feCK. 

Hence Tf - £ f(ki) Ĵ  ;T1 

and range(T) £ вpan J t -TД |i-1
f
..,,n} . 
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Theorem 8> Suppose that every extreme operator from E to CL 

is nice* Let T: C(K,E)—> CL be an extreme operator such that 

T*(l) is fa non-zero point measure for all lcL. Then T is nice. 

Proof: T* is of the form T*(l) « p(l)® J^,^, p(l]eE'\(ol, 

The function l*-> p(l) is seen to be weak*-continuous, hence 

represents a bounded linear operator S: E—> CL. In order to show 

that T is nice it is sufficient to show that S is nice by 

Theorem 2. For this it is enough to prove that S is extreme 

according to our present assumptions. In fact, let u be a weak*-

continuous function from L into E1 such that for all leL 

|IP(1) + u(l)ll ^ 1- Then ||T*(1) + ufl^S^jH L 1 for all 1. 

But 1 HuflJ^o^/ s is weak*-continuous since y: L—) K and trip 

map (BE,,weak*)x K —•» (-Ŵ , £y, ,weak*), (q,k)>-> q& ̂  are 

continuous. Therefore u«0, and S is extreme. 

(To prove that Y is continuous fix 1 0EL. We shall show that o^r > 

is continuous at 1̂ . Choose X F E SO that p(-J(x)- * 1- T n e n 

for geCL T*(l)(g<* x) - p(l)(x) g(v(l)) 

and the weak*-continuity of T* and p together with pfljfx) * 0 

imply the weak*-continuity of v^r y. Since 10 is arbitrary 

we are done.) 

It can be shown that the conditions in Theorem 3 concerning T 

are fulfilled whenever K is dispersed and E is finite dimensional, 

cf. [18], 
To finish with, let us rephrase Theorem 6 in terms of vector-valued 

functions. 

Theorem 6*: The following statements are equivalent: 

(a) Every extreme function in C(L,Z) assumes only extreme values. 

(b) Every extreme function in C(L,M(K,Z)) assumes only extreme 

values, where K is an arbitrary compact Hausdorff spacê . 

In [19] it is proved that an abstract L-space Z satisfies the 

above conditions. 
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