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DISSIPATIVE SYSTEMS 75 

B. Crell 

0. Introduction 

A fundamental observation in nature is the irreversible time develop­
ment of macroscopic systems. Such observations (in connection with 
the conversion from heat to mechanical work) led CLAUSIUS (1850) to 
the formulation of a variant of the second law of thermodynamics. 
CLAUSIUS made in 1865 a further important step: he showed on the ba­
sis of the second law the existence of a variable - the entropy S of 
the system, which is only a functional of the realized equilibrium 
state. The entropy S has for an isolated physical system the follow­
ing property: is the system in an equilibrium state £ and goes (be­
cause of changing the physical conditions) over into a new equili­
brium state £, then S(£)^ S(£). In other words: for isolated systems 
the entropy never decreases and so indicates that a process £—»£ 
can not reversed if S(£)<S(£). 

A dynamical description of such irreversible processes was possible 
only with the methods of statistical mechanics. The general idea is 
then the following: the irreversible temporal behaviour of physical 
systems is indicated by the monotone temporal behaviour of certain 
state functionals. The most famous example is the Boltzmann equation 
(as the evolution equation of the process) and the monotone beha­
viour of a state functional H - briefly H function (so called H the­
orem of Boltzmann, 1872). 

In the following we speak about discrete, classical physical systems 
and introduce a family of state functionals. Then, we define a class 
of processes (called dissipative processes) by the claim that all 
this functionals show a monotone behaviour in time. 
In a review we present some of the essential implications on the 
possible time developments of such dissipative systems. 
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1• Finite-dimensional classical systems 

The phy9ical variablea of finite-dimenaional ay9tem3 are all vectora 

from Rn. Thi3 meana: the componenta of A* Rn give the po33ible val­

ues of the phyaical variable A. 

Then, a state (aa a normalized element from the poaitive cone of the 

.dual of Rn) is given by a n-dimenaional probability vector £ : £ =-

(p-j,...,p ), p^^ 0 for all i and 2"-, p. = 1 • Accordingly a atate ia 

a expectation value functional for the phyaical variablea: 

A — * < A > £ -X, PiAi » A^Rn . 

The aet of all atatea (or all probability vectora) will be called 
the atate apace P . The interior of the atate space ia the aet of 
the etrictly po3itive 3tatea (i.e., all componenta of auch a 8tate £ 
are positive - briefly £ > 0 ) . 

We deacribe the time development (or a proceas) of such a system by 
a trajectory in the atate apace Pn. I.e., we have a map ', which de­
termines a state £(t) for every instant of time t 0 (£(0) will be 
called the initial state). 
Eapecially, we are intereated in time development3 which are given 
by a aystem of ordinary differential equations: (d/dt) £ = v(£) 
Differential equations will be called Pn-invariant evolution equa­
tions, when every solution which starts with initial value from the 
atate apace P can be extended to all timee t> 0 and forever remaina 
in P . n 
Now, we introduce 8tate functionals. A fundamental notion ia the 

di8crete veraion of Boltzmann's H function /6/: H(£) =2L.\ VA l°g P*« 

Let U9 con9ider the structure of H(£). One notices eaaily that 

H(£) -Z; (n) g(P"'A^)) - log n , 

when g(a) represents the convex function a log s. 
We generalize thia exprea9ion in varioua aspecte. 
Definition: Let g(a) be an arbitrary convex function (defined on R+) 
and £, ̂  atatea (£> 0). 
Then we define q-relative H functionala 

g 
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We get Boltzmannfa H (up to a conatant) for the reference atate 
£ » (1/n,...1/n) and the convex function g(e) • 9 log a. 

Now, in connection with Boltzmann'a H theorem we alao formulate £-

relative H theorema. 
Definition: A trajectory (£.(t)) ^ Q in the state space P fulfils 
the q-relative H theorems if and only if for any convex function g 

Sg(£(t)/a) ^ Sg(£(f)/a) 

when t ̂  tf. 

Remark 1. There is a nice geometric interpretation for processes 

which fulfil the ^-relative H theorems. 

For a fixed state £> 0 we define a partial order ^ in P : 

/£, 3/ fc" /£> £/ (ft£ is relative to £ more mixed than £") 

iff Sg(£/£) ^
 s

g(£t 2) f°r any convex g. 

Equivalent definitions are the following ones (/1/) 

(i) There exists a stochaatic matrix A with. 
A£ • £ and Ac[ • c[. 

or 
(ii) //£ - \ £//1 ^ //£ - \ a/^ for all A€ R + 

(//a//1 'Zj/ai/, a 6 R
n) 

This shows the very regular behaviour of trajectories which fulfil 
relative H theorems: the state becomes more and more mixed (relative 
to the reference state) or (in other words) the distance functions 
(from (ii)) never increase. The dynamics is generated by stochaatic 
transformations. 

The introduced order relation is only a special case of a general 
relation between tupels and even n-tupels of vectors (see /1/). With 
the referen;o£ state c[ = (1/n,. ..,1/n) we get from the above defined 
relation a partial order which has been investigated already in 
claS3ical works about matrix theory (SCHUR, OSTROWSKI, HARDY, LITTIE-
WOOD, POLYA and others). For the "non-commiitative version" (with 
application in quantum mechanics founded by UHIMANN) see /2/ and 
also /8/. 

Now, we illustrate the introduced concepts by an important example. 
Remark 2. A fundamental equation in non-equilibrium statiatical me­
chanics is the so called master equation: 

d/dt £ • L£ where L is a stochaatic generator: 

L ± i^ 0, L i k> 0 i + k, 2-.
Lik a ° for a11 k 
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(i.e., a generator of a aemi-group of etochastic matricea). One sees 
easily that such an equation can be written (possibly after reselling 
of time) as a balance equation 

d/dt Pl - Z k (Aifc pn - Aki Pi) 

= (Z kA i kP k) - PÍ 
1, • • • ,n 

with A a (A.,) stochastic. 
The physical interpretation is then the following: p. determines the 
probability to find the system in the (pure) state e. = (o,...,o,1, 
o,...,o) and the A.k

fs give the probability per unit time for a 
transition from e^ to e^ • 
Because every solution (£(t)) .^ Q is generated by a semi-group of 
stochastic matrices (which map states into states), master equations 
are P -invariant evolution equations. Further, we get immediately 
from Remark 1 (i) that all solutions of master equations (which atart 
in P ) fulfil the ^-relative H theorems with respect to every sta­
tionary state £ (i.e. L£ = o, £ > 0 ) • 
The direct proof is very simple. Is t^tf, then exi9t9 a atochaatic 
matrix A with £(t) » A £(tf) (A£ = £) • 

Now, Sg(£(t)/£) -2"j <*i 8 (^> <£(*•) = (Pi ••••)) 

<-" „ „ ^K Alk p k «r- „ „ ,--Aik qk . - M 

4Zj«ii ^ i k ^ ) g <^) = sg(a(f)/a) 

if we uae that A ia 9tochaatic, £ i9 fix-point of A and Jensen1s 
inequality for convex functions. 

PAULI introduced already 1928 a special master equation and proved 
a H theorem for Boltzmannfs H functional. But the more general re­
sult was given only in 1940 by YOSIDA, obviously unnoticed and so 
many years later rediscovered. 

2. Dissipative Procea9ee 

We call a process (in P ) dis9ipative. when there exists a state 
£ (a > 0) such that the trajectory fulfils the ^-relative H theo­
rems^. A dissipative ey9tem is a Pn-invariant evolution equation 
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euch that all aolution3 9tarting in P„ fulfil the q-relative H theo-
rema for the eame atate £ (£>())• ' 
Boltzmann used his H theorem to demonstrate (in an intuitive way) 
the asymptotic approach to the equilibrium atate. What can we say . 

about the asymptotic behaviour of disaipative procea3es or di9sipa-
tive aystems? 
In general it ia not valid that the trajectory of a diasipative pro-
ce33 (with reepect to £) approaches £ aa t—> <x> . 
The general result is the following 

Theorem 1. Let (£(t)) -J-VQ a (continuou3) di9sipative proceas 
(with reepect to £ > 0 ) . 
Then, it exist3 lim p(t) • £». Further, let the initial atate 
£(0)> 0 than alao £(t)>0 for all t> 0 and JD^ 0 . 
In the case of diesipative systems we get 

Theorem 2. Suppose we have a diasipative sy3tem (with respect to 

a>o) • 
Then, every solution starting in Pn convergea to a atationary atate. 
Further, every solution starting in the interior of P remaina there, 
and the aaymptotic atationary atate ia alao from the interior of Pn. 
Which role playa the reference etate £? 

Theorem 3. Suppose we have a dia3ipative ay3tem (with respect to 

a>o). 
Then, £ is a atationary atate. If only finitely many atrictly po3i-
tive etationary atates exi8t, then £ i3 the only etable atationary 
atate and aaymptotically atable (atability in reatriction to -?n)« 

Every aolution 3tarting with £(o)>0 approachea £ as t-*ao 
if £ ia the only 3trictly po9itive stationary atate. 
Let us now give an impfreasion of the proofs, which are given in /5A 
We ahow a central fact: the convergence of the trajectoriea. 
It ia well-known from topological dynamica /7/ that the co -limit 
set-Q- ^ of a trajectory in Pn (Pn ia compact!) ia a compact, non-
void and connected set. Because of continuity of the trajectory and 
the H theorems, we get 

s
g(£/a) *

 s
g(£/a)

 f o r a 1 1 convex g if £, £ G SL . 

How we choose aa special functionala the distance functions from 

chap. 1 (Remark 1 (ii)). Therefore, X€ R + 

(+) f(X ) • //£ - A £//-| ia on SL only a function of A t R + 

Prom thia we conclude that -XL ia a one-point eet, becauae (+) showa 
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that SL has only finitely many elements, on the other hand: _Q, is a 

non-void, connected set. 

Some words about theorem 3. When we choose the reference state £ as 

a initial state, then must be (for the distance function with A = 1) 

//£(t) - £ / / ^ //£ - £//1 = 0 for all t > 0 

(because also the trajectory £(t) with £(0) = £ is dissipative). 

Prom //£(t) - £// = 0 follows immediately the stationarity of 

£ : £(t) = £ for alL t>0. 

Further, we can uae some of the H functionals as Ljapunov functionals 

and inve9tigate the stability properties of q. 

3. Structure of dis3ipative ay3tems 

We already know an example of a dissipative system - the master 

equation. The class of all such systems contains however more com­

plicated (nonlinear) systems. 

Suppose we have a P -invariant evolution equation (d/dt) £ = £(&) 

Which structure has the vectorfield v if we know tpat it is a dissi­

pative systems? 

Theorem 4. Let (d/dt) £ =- v(£) be a P -invariant evolution equa­

tion. 

We have a dissipative system (with respect to £ > 0 ) if and only if 

there exist a open, dense set S c P and a map L: S^'rj—>L(£) from S 

into the real nxn-matrices with 

(i) L(£) is a stochastic generator 

(ii) L(£)£ = 0 

(iii) v(£) * L(£)£ for all £ 6 ^ . 

The proof is in l5l* It uses concepts and arguments as explained in 

chap. 1 (Remark 1 and 2). 

The theorem says that the vectorfield of a dis3ipative ay3tem is 

("almost everywhere") given by a state-dependent stochaatic genera­

tor L(£). It is useful to compare the result with chap. 1 (Remark 2): 

the vectorfield of a master equation is given by a constant stochas­

tic generator. 

Our next aim is to investigate some often used systems: the quadratic 

sy9tems. This means that the map L is affin on P 

L(£) - L(ZkPkek) «X kP kL k 

with the stochastic generators L(eO a Lv . 
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Such systems are P -invariant evolution equations (/5/)» When even 
exists a state £> 0 with L̂ fl -* 0 for all kf then we can apply theo­
rem 4: the system is dissipative. Therefore we can also apply theo­
rem 2 and 3. 

If we suppose that (Zk
L
k^n • ° for a11 i» S* 3L ±a the only strictly 

positive stationary state of our system (this follows from the asymp­
totic properties of irreducible Markov chains /5/)» In this case, £ 
has the announced stability properties and is the asymptotic state 
for every trajectory. 
We illustrate these facts by a second example. A differential equa­
tion of the following kind will be called Boltzmann-like equation 
(as a discrete caricature of the Boltzmann equation): 

d/dt p± .jT (Aijkl p k P l - A k n p l P ) i = n . _ . f n 

with the properties for the scheme of the ^..,,'8: 

Aijkl s Ajikl = Ajilk^ ° for a11 i'A'^'Z^wa = 1 for a11 -*'1 

We define a sequence of stochastic nxn-matrices B^k': 

B(k) -21 A 
*ij ^l Ailkj • 

(k) 
With this sequence Bv*' we can write the vectorfield of Boltzmann-
like equations 

v(£) - (ZP k
B ( k ) - i)£ s (Zvk\)R when 1^ ,- B(k)- lf l - ^ A 

Now we are in position to formulate a corollary to our theorems. 

Corollary. When we have a Boltzmann-like equation and we suppose 
that it exists a state £ > 0 with Lk£ = 0 for all kf i.e. B*

k'£ s SL 
for all kf then we have a dissipative system (with respect to a) 
and all solutions starting with £(0)> 0 converges to q as t-* co . 
The proof is obvious. We remark only: the property B* & == £ 
garantees also that GLW* * ° for a11 ifd» 

It is not difficult to give for every £> 0 a scheme ( A - M ^ ) so that 
all conditions of the corollary are fulfilled (/3/). 
We can interprete general Boltzmann-like equations as balance equa­
tions for collisions, p^ describes the probability to find a partic­
le with property i;and A^.^ gives the transition probability per 
unit time that a pair of particles with properties k,l is scattered 
into a pair with properties ifrj. 
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In a similar way (if one uses theorem 4) every dissipative system 

can be interpreted as a balance equation with state-dependent tran­

sition probabilities. 

The stated assertions are a contribution to the qualitative behaviour 

of this class of dynamical systems. 

An additional class of "dissipative" systems is introduced and cha­

racterized in /4/. 

1) 'We consider only Continuous trajectories (at t = o from the right). 
2) 
'It can happen that more than one such state £ exists! 

) 

4) 

•^'I.e., the 3et of all limit points (in P ) of the trajectory. 

'W* suppose that the vectorfield v is continuously differentiable. 
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