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DISSIPATIVE SYSTEMS 75

B. Crell

0. Introduction

A fundamental observation in nature is the irreversible time dévelop—
ment of macroscopic systems. Such observations (in connection with
the conversion from heat to mechanical work) led CLAUSIUS (1850) to
the formulation of a variant of the second law of thermodynamics.
CLAUSIUS made in 1865 a further important step: he showed on the ba-
sis of the second law the existence of a variable - the entropy S of
the system, which is only a functional of the realized equilibrium
state. The entropy S has for an isolated physical system the follow-
ing property: is the system in an equilibrium state p and goes (be-
cause of changing the physical conditions) over into a new equili-
brium state g, then S(p)< S(g). In other words: for isolated systems
the entropy never decreases and so indicates that a process p—>g
can not reversed if 5(p)< S(g). ’

A dynamical description of such irreversible processes was possible
only with the methods of statistical mechanics. The general idea is
then the following: the irreversible temporal behaviour of physical
systems is indicated by the monotone temporal behaviour of certain
state functionals. The most famous example is the Boltzmann equation
(as the evolution equation of the process) and the monotone beha-
viour of a state functional H - briefly H function (so called H the=-
orem of Boltzmann, 1872).

In the following we speak about discrete, classical physical systems
and introduce a family of state functionals. Then, we define a class
of processes (called dissipative processes) by the claim that all
this functionals show a monotone behaviour in time.

In a review we present some of the essential implications on the
possible time developments of such dissipative systems.
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1. Finite-dimensional classical systems

The physical variasbles of finite-dimensional systems are all vectors
from R®. This means: the components of Ae R? give the possible val-
ues of the physical variable A.

Then, a state (as a normalized element from the positive cone of the
.dual of R%) is given by a n-dimensional probability vector p : p =
(PyseeesPy)s Py> O for all i and = p; = 1. Accordingly a state is
a expectation value functional for the physical variables:

.; a
A—<A>, =2, pihy s ACRT .

The set of all states (or all probability vectors) will be called
the gstate space Pn. The interior of the state space is the set of
the strictly positive states (i.e., all components of such a state p
are positive - briefly p>0).

We describe the time development (or a process) of such a system by
a trajectory in the state space Pn. I.e., we have a map1 , which de-
termines a state p(t) for every instant of time t 0 (p(0) will be
called the initial state).

Especially, we are interested in time developments which are given
by a system of ordinary differential equations: (d/dt) p = ¥(p)
Differential equations will be called P -invariant evolution equa-
tions, when every solution which starts with initial value from the
state space Pn can be extended to all times t> O and forever remains
in Pn.

Now, we introduce state functionals. A fundamental notion is the
discrete version of Boltzmann's H function /6/: H(p) =25ipi log py.

Let us consider the structure of H(p). One notices easily that
A P;
Hp) =5, ) e(P/%) - 108 n

when g(s) represents the convex function © log s.

We generalize this expression in various aspects.

Definition: Let g(s) be an arbitrary convex function (defined on R+)
and p, g states (g> 0).

Then we define g-relative H functionals

sg(plg_) t = Zi q;g(P;/q;) .
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We get Boltzmann's H (up to a constant) for the reference state

g = (1/n,...1/n) and the convex function g(s) = s log s.

Now, in connection with Boltzmann's H theorem we also formulate g-
relative H theorems. »
Definition:. A trajectory (p(t)) 40 in the state space P fulfils
the g-relative H theorems if and only if for any convex function g

Sg(n(t)/,g) < Sg(n(t')/_g)
when t2 t'.
Remark 1. There is a nice geometric interpretation for processes
which fulfil the g-relative H theorems.

For a fixed state g> 0 we define a partial order T in Pn:
/p, o/ € /B, a/ ("p is relative to g more mixed than ")

iff S (g/g) S (B, g) for any convex g.
Equivalent definitions are the following ones (/1/)

(i) There exists a stochastic matrix A with.
Ap=p and Ag = g.
or

(11) //p - X ally s //5 - A a//, for all AeR,
(//8/14 =Z;/84/, 8 € R")

This shows the very regular behaviour of trajectories which fulfil
relative H theorems: the state becomes more and more mixed (relative
to the reference state) or (in other words) the distance functions
(from (ii)) never increase. The dynamice is generated by stochastic
transformations.

The introduced order relation is only a special case of a general
relation between tupels and even n-tupels of vectors (see /1/). With
the referencé state g = (1/n,...,1/n) we get from the above defined
relation a partial order which has been investigated already in
classical works about matrix theory (SCHUR, OSTROWSKI, HARDY, LITTIE-
WOOD, POLYA and others). For the "non-commutative version" (with
application in quantum mechanics founded by UHLMANN) see /2/ and
also /8/.

Now, we illustrate the introduced concepts by an important example.
Remark 2. A fundamental equation in non-equilibrium statistical me-
chanics is the so called master equation:

d/dt p = ILp where L is a stochastic generator:
Liis o, Lik? 0 1i+#k, ZiLik = 0 for all k
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(i.e., a generator of a semi-group of stochastic matrices). One sees

easily that such an equation can be written (possibly after resceling
of time) as a balance equation

a/at py = 2, (Ayy Py = Ay py)

1= 1,c0eyn
=(2, A P) - Py
with A = (Aik) stochastic.
The physical interpretation is then the following: Py determines the
probability to find the system in the (pure) state ey = (o,...,o,;a
O,+¢0,0) and the Aik'e give the probability per unit time for a !
transition from g, to g; .
Because every solution (p(t)) t30 18 generated by a semi-group of
stochastic matrices (which map states into states), master equations
are Pn-invariant evolution equations. Further, we get immediately
from Remark 1 (i) that all solutions of master equations (which start
in Pn) fulfil the g-relative H theorems with respect to every sta-
tionary state g (i.e. Ig = o, 3>0) .
The direct proof is very simple. Is t> t', then exists a stochastic
matrix A with p(t) = A p(¢') (Ag = @) .

o1 ' .
Now, Sg(p(t)/a) =2. q; & (3 ((t") = (p},...))

A p q Pl
(Zikk ikk k
=2y e =2jue Qo g— g

I
q P
<39 i q_l;) ¢ (ai') = Sg(p(t")/a)

if we use that A is stochastic, g is fix-point of A and Jensen's
inequality for convex functioms.

PAULI introduced already 1928 a special master equation and proved
a H theorem for Boltzmann's H functional. But the more general re-

sult was given only in 1940 by YOSIDA, obviously unnoticed and so
many years later rediscovered.

2. Dissipative Processes

We call a process (in Pn) dissipative, when there exists a state
g (g > 0) such that the trajectory fulfils the g-relative H theo-
remsz). A dissipative system is a Pn-invariant evolution equation
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such that all solutions starting in P, fulfil the g-relative H theo-
rems for the same state g (g> 0). 2 ,

Boltzmann used his H theorem to demonstrate (in an intuitive way)
the asymptotic approach to the equilibrium state. What can we say
about the asymptotic behaviour of dissipative processes or dissipa-
tive systems?

In general it is not valid that the trajectory of a dissipative pro
cess (with respect to g) approaches g as t—> @ .

The géneral result is the following

Theorem 1. Let (p(t)) >0 @ (continuous) dissipative process
(with respect to g>0).

Then, it existst]_.,icxg B(t) = DPoe Further, let the initial state
p(0)> 0 than also p(t)>Q for all t>0 and p> O .

In the case of dissipative systems we get

Theorem 2. Suppose we have a dissipative system (with respect to
a>0) .

Then, ,every solution starting in Pn converges to a stationary state.
Further, every solution starting in the interior of Pn remains there,
and the asymptotic stationary state is also from the interior of Pn.
Which role plays the reference state g?

Theorem 3. Suppose we have a dissipative system (with respect to

a>0).

Then, g is a stationary state. If only finitely many strictly posi-

tive stationary states exist, then g is the only stable stationary

state and asymptotiéally stable (stability in restriction to Pn).
Every solution starting with p(o) > O approaches g as t-» o

if g is the only strictly positive stationary state. '

Let us now give an impression of the proofs, which are given in /5/.

We show a central fact: the convergence of the trajectories.

It is well-known from topological dynamics /7/ that the w -1limit

set L 3) of a trajectory in Pn (Pn is compact!) is a compact, non-

void and connected set. Because of continuity of the trajectory and

the H theorems, we get

Sg(pjg) = Sg(fg'/_g_) for all convex g if p, P € L .

Now we choose as special functionals the distance functions from
chap. 1 (Remark 1 (ii)). Therefore, A€ R,

(+) £(A)=//p-Ag//;is on L only a function of A€ R,

From this we conclude that £ is a one-point set, because (+) shows
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that L has only finitely many elements, on the other hand: _Q 1is a
non-void, connected set. ’

Some words about theorem 3. When we choose the reference state g as
a initial state, then must be (for the distance function with A = 1)

//a(t) - a/ly< //a -\,g,//, =0 for all t>0

(because also the trajectory g(t) with g(0) = g is dissipative).
From //q(t) - g// = 0 follows immediately the stationarity of

g : a(t) = g for all-t>0.

Further, we can use some of the H functionals as Ljapunov functionals
and investigate the stability properties of q.

3. Structure of dissipative systems

We already know an example of a dissipative system - the master
equation. The class of all such systems contains however more com-
plicated (nonlinear) systems. )
Suppose we have a P -invariant evolution equation ﬁd/dt) R = 3(2)4)'
Which structure has the vectorfield v if we know that it is a dissi-
pative systems?

Theorem 4. Let (d/dt) p = v(p) be a P -invariant evolution equa-
tion. -

We have a dissipative system (with respect to g>0) if and only if’
there exist a open, dense set Sc P and a map L: S2'p—L(p) from S
into the real nxn-matrices with :

(1) L(p) is a stochastic generator
(ii1) IL(p)g =0
(111) y(p) = L(p)p for all p €S-

The proof is in /5/. It uses concepts and aréa;ents as explained in
chap. 1 (Remark 1 and 2).

fhe theorem says that the vectorfield of a dissipative system is
("almost everywhere") given by a state-dependent stochastic genera-
tor L(p). It is useful to compare the result with chap. 1 (Remark 2):
the vectorfield of a master equation is given by a constant stochas-
tic generator.

Our next aim is to investigate some often used systems: the quadratic
systems. This means that the map L is affin on Pn

L(B) = I‘(kak&k) EkakLk

with the stochastic generators L(gk) =L .
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Such systems are P -invariant evolution equations (/5/). When even
exists a state g>0Q with L,g = 0 for all k, then we can apply theo-
rem 4: the system is dissipative. Therefore we can also apply theo-
rem 2 and 3.

If we suppose that (3.I,);4 # O for all i, J, g is the only strictly
positive stationary state of our system (this follows from the asymp-
totic properties of irreducible Markov chains /5/). In this case, g
has the announced stability properties and is the asymptotic state
for every trajectory.

We illustrate these facts by a second example. A differential equa-
tion of the following kind will be called Boltzmann-like equation
(as a discrete caricature of the Boltzmann equation):

a/at py =D (Aygiq PxPy = Aggy P4Py) 1= Teeey m

"%

with the properties for the scheme of the Aijkl'sz
Rygk = Ay = Agap > O for all 1,3,k,1,Z.’inJk1 = 1 for all k,1

We define a sequence of stochastic nxn-matrices B(k):

(x)
Bij ’Zl A1y -

With this sequence B(k) we can write the vectorfield of Boltzmann-
like equations

¥(p) = ({f_pkB(k) -1)p = (gpkLk)B when L, .= BK)- 1, 1=(8,)
Now we are in position to formulate a corollary to our theorems.

Corollary. When we have a Boltzmann-like equation and we suppose
that it exists a state g>0 with L g = 0 for all k, i.e. plk g9=9
for all k, then we have a dissipative system (with respect to g)
and all solutions starting with p(0)> O converges to % as t—r .
The proof is obvious. We remark only: the property B( )g =q
garantees also that (%E_Lk)13 £ 0 for all i,j.

It is not difficult to give for every g> 0 a scheme (A;4,) -s0 that
all conditions of the corollary are fulfilled (/3/).

We can interprete general Boltzmann-like equations as balance equa=-
tions for collisions. p; describes the probability to find a partic-
le with property i,and Aijkl gives the transition probability per
unit time that a pair of particles with properties k,1 is scattered
into a pair with properties i,]j.



82 B. CRELL

In a similar way (if one uses theorem 4) every dissipative system
can be interpreted as a balance equation with state-dependent tran-
sition probabilities.

The stated assertions are a contribution to the qualitative behaviour
of this class of dynamical systems.

An additional class of "dissipative" systems is introduced and cha-
racterized in /4/.

1)We consider only dontinuous trajectories (at t = o from the right).
2)It can happen that more than one such étate g exists!

3)I.e., the set of all limit points (in Pn) of the trajectory.

4)WP suppose that the vectorfield y is continuously differentiable.
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