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SOME TYPES OF PoINTS IN N

A.Cryzlov

We deal with some kinds of points in N's %N\N , matrix
points, R-points, O-points.

I. Matrix p01nts. Recall an independent matrix in N* [1]
is a fam11y{}\ <L‘=2. 2 of clopen subsets of N* such that
(1) for all p Cif A#L | and
(2) if Bg,..r) Pn are dlstlnct then for all &g ..., &4
distinct or not, r\{f\ \.‘h& *¢ _

I.1. Definition. A po:.nt xeN"‘ is called a matrix point if
there is an independent matrix as just defined, such that for any
sequence G= {\l LGN} of nelghbourhoods of X. there is B(O’)Cz.w
with B@)\é?. such that xeUih g Ui Le w) where
{p: ;ewk c2? \E)(ﬁ') are dlstlnct and {4¢: W‘O}CZA [L‘_.\

A simple consequence of thig definition is

I.2. Theorem. Let X be a matrix point in N* for the matrix
{A» e’ P513 . et R U——w} be a i‘amlly of closed sets in

N* , not containing X . Suppose Bc?. and |B\ 2- and for
any §€_B there is an &€21° with A (\(U‘K\: -““*’3) =¢.
Then Xx¢ U{‘:Q"LELOB

An immediate consequence of Theorem I.2 is the fact that no
matrix point can be in the closure of the union of any countable
family of closed sets in N* each of which has Souslin number
less than 2° .

I.3. Theorem. A matrix point of N* is c-ok.

I.4. Theorem. There are 2° matrix points in N*

II. Strictly R-points. A family )\’\'\} is precisely N -linked
if an intersection of any N elements of A is not empty and
intersection of any n+\{ elements of N s empty

Tor each {¢n<w there is n -linked family )\ in W*
such that D\\=2‘° and )\ consists of clopen subsets of N* U-l

Let ‘N=U{\lh‘- néu)j be a union of clopen disjoint subsets of .
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N* and R {V‘;('\)‘-&Szo} be a precisely Wn-linked family of
clopen subsets of u,\ .

We call n={‘3?_,!_'-héh)} a foltering system. Define: B|={0l:0| is
clopen subset of W and for each néW there is V‘Lh)é 'R,‘ such
that O'NU, 2 \Lb\)} . Define ¢(_r_\3 =N40": O‘EB‘B .

II.1, Definition. A point X€W\W is called a strictly k-
point if X€¢(r\> for some filtering system ﬂ={'\7“='\&‘0} (see
2],1a1) -

II.2. Theorem. If X is strictly R-point, then Nx\‘b\l\ is not
normal.

Note that matrix points are strictly R-points.

< . . R
IITI. O-points. We prove that there are 2 O-points in N ,and
so answer the E.van Douwen’s question. . .
<N cp L ALSA: "*“5\_0
Recall that a set A< has a density 0 if Um n
n»>oo
We will write d(N) =0.

III.1. Definition. A point xeN¥ is called a O-point if for
each permutation ‘-“N"N there is NEN guch that N €X and

d(d(A))=0.

¢ ¥
I1II.2. Theorem. There are 2 O-points in N .
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