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ON CERTAIN QUANTITES IN FREDHQLM - OPERATOR 

THEORY AND M I L ' MAN'S ISOMETRY SPECTRUM 

O.J. Beucher 

§ 1: INTRODUCTION 

In this note we look at the following two quantities in 

the theory of Fredholm operators, which were introduced by 

M. Schechter [13] and B. Gramsch [11]: 

r(T) := inf II T. II 
McX 'M 

A(T) := sup inf II T, II 
Mcx NcM 'N 

Here T is a continuous linear operator from a Banach space X to a 

Banach space Y (i.e. T € L(X,Y)) and M,N are closed infinite dimen

sional subspaces of X. In this note for convenience we shall only 

write subspace if we speak of a closed infinite dimensional subs 

space. 

These quantities provide characterizations of two classes 

of operators, namely the class of <x>+-operators (Semi-Fredholm 

operators with finite - dimensional kernel) and the class of 

strictly singular operators or Kato-operators (cf. for ex. [12]) 

because: [13] 

A(T) = 0 *» T strictly singular 

r ( T ) > 0 ~ T e < x > + 

The main result of Schechter's paper is the following 

generalization of the wellknown Krein-Gohberg- and Kato perturbation 

theorems for (semi-) Fredholm operators: T,S :• X -» Y then 

A(S) < r(T) => T + S e <t+ , ind (T+S) = ind (T) 

Finally we mention that there are dual notions and results 

for <D_ - operators and Pelczynski's strictly cosingular operators 

tcf.8; 14; 15] which however will not be considered here. 
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§ 2: REPRESENTATION THEOREMS FOR A,r 

At first glance it seems that r and A are only of very 
theoretical interest because (with the exception of some very 
special cases) there is no hope to calculate r(T) and A ( T ) for an 
operator T from their definition even when T is given in a 
concrete representation. 

But nevertheless with the help of some Banach space 
techniques, in many cases a much nicer representation of r and A 
is possible if we restrict ourselves to 

(a) special classes of operators 
or (b) special classes of Banach- spaces 

(namely those with a "good" subspace stucture as we will 

see later) 

As an illustration we state the following result of L.W. Weis and 
the author, which shows, that for the determination of r and A it 
suffices to calculate the norms of restrictions of the operator 
to special subspaces, if the subspace structure of the considered 
Banach space is well known. 

2.1. PROPOSITION: 

Let X = l p (l£p<co) or cQ and! T e L(X). Then 

A(T) = lim II Q n T Q nH 
n-*» 

r(T) = Tim Y ( Q n T Q ) 
n-*» 

where Q denotes the canonical projection of X onto the span of the 
unit vector basis starting from index n+1 and y the minimum 
modulus of an operator. 

Idea of proof: It is possible to choose inductively a sequence 
x of neai 
speaking, 
x of nearly disjoint (normalized) vectors in X such that, roughly 

T x n " ^n T Vn 
(1 + e) 

and II Qn T Qn <?n || « II Q„ T Q n N 

By truncation and normaization we get normalized disjoint 

sequences x and y such that 
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Tx « II Q T O N y n wn wn ^n 
1 + e 

(in reality Tx n « II Q n T Q m II yn for some suitable sequences 
nk nk mk nk 

nk* mk k u t t'11s 1S o n ^ °^ technical importance) 

So we can construct subspaces <x > and <y > of X isometric to X 
^ n n 

[cf. ;6] such that T. behaves like a diagonal operator D with 

diagonal II Q T Q II . This situation is represented in the follow

ing diagram: 

(i+«) 

So A ( D ) •< ( 1 + G ) A ( T). rBut the calculation of A ( D ) 5 D being a diago

nal operator on X, is very easy. A ( D ) equals just the limit of the 

diagonal sequence i.e. lim II Q T Q II in our case. Trivially 

[cf. 13] A ( T ) £ II Q T Q ll yneIN and the ,a.bove ddnsideraitydn .yields 

the desired result. 

The proof of r- result is similar. • 

As an application of the result just mentioned and as'an 

illustration of the viewpoints § l,a,b we give the following simple 

example: 

Let H 2 d T ) be the Hardy-space [cf. 2] and 

H : H 2(TP) - H 2(TT) a Hankel-operator and T : H 2(TT) -• H 2(TT) a 

Tbplitz-operator. Both operators can be represented as operators in 
2 

1 by infinite matrices: 

/ ao al a 2 a 3 ' 

al a2 a3 a4 ' 

a2 a3 a4 a5 • 
; т = 

/
a
o

 a
l

 a
2

 a
3 * 

a
- l

a
0

 a
l

 a
2 • 

a
- 2

a
- l

a
o *1 • 

The proposition 1.1 says that A(H) and A ( T ) are simply the limit of 
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the norms of those operators defined by the submatrices which arise 

when we cut off the first n rows and columns. (So we get for example 

ta0 «j a 2 a 3 ...* 

a-l ao al a2 '• 

a - 2 a - l a o al •• 

and U Q n T Qnl II T|| vn which means that A(T) = II Til .) 

What is essential in this example is that using proposi-i 

tion 1.1 in calculating A*and r we only have to consider subspaees 

which do not destroy the structure of the operator because Q nTQ n 

remains a. Toeplitz operator and Q HQ remains a Hankel operator. 

As a further result of the possibilities in representing 

r , A on certain concrete spaces, we mention the following 

generalization of a result of Pelczynski [9] which says that on 

L -spaces strictly singular operators are always weakly compact and 

vice versa. This theorem is due to L.W. Weis [unpublished] : 

2.2 THEOREM [Weis] 

Let (X,y); (Y,v) compact measure spaces with regular 

Borel measures and T : L*(X,y) -* L ^ Y - v ) 

Then 

A(T) = lim II x A
T M 

v(A)-o A 

§ 3 ^THE ISOMETRY SPECTRUM AND A, r 

The main interest of this note however lies in the con

nection of A and r and a notion introduced by V.D. Mil'man in [7]. 

This is the so called Isometry Spectrum of an operator which will be 

defined as follows: 

Let X,Y be Banach spaces and T e L(X,Y). Then we call 

T(T) := {a€]R+: Ve>0 3McX, dim M -= » such that 

| II Txll - a | < e VxeM, || x II = 1 } 

the Isometry Spectrum of T. 

So I(T) contains all a > 0 for which there exists an 

infinite-dimensional closed subspace M of X where T behaves like 

the a-product of an isometry. 

Trivially there are the following relations to the 
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quantities A ,r : 

A(T) = 6 ** T strictly singular <=> I(T) = {0} 

and I(T) c [r(T); A ( T ) ] . 

But if we restrict ourselves, following the ideas above, 

to Banach spaces with "good" subspace structure, we can even say 

more: 

Let us call C the class of all l p- saturated Banach spaces 

in the following sense: 

X € C *> vMcX, dim M = 00 Ve > 0 

3DE[l,°o) 3 N C M , dim N = 00 

such that N = l p 

l+£ 

The class C is big enough. This can be seen from the fact that it 

contains the class of all stable Banach spaces defined by Krivine 

and Maurey in [5]and therefore especially l p-, L p-, Lorentz and 

some Orlicz-spaces [cf. 10] . 

If we consider only the class C we are able to statecthe 

following 

3.1 PROPOSITION: 

Let X, Y be in C. 
Then A(T) = maxI(T) 

r(T) = minl(T) 

i.e. A ( T ) , r(T) are contained in l(T). Especially follows: 

M c X, dim M = 00 -* A(T| M)€I(T) 

IDEA OF PROOF: We have to show that r(T) and A(T) are elements of 

I(T). This is trivial if r(T) = 0 or A(T) = 0 since in both cases 

there are subspaces where T can't be an isomorphism and so 0€l(T). 

If A ( T ) or r(T) =)= 0 then T is a> or strictly singular according to 

the characterization in § 1. So there are subspaces M where T is an 

isomorphism onto TM and which can be chosen in such way that 

II T|MII « A(T) resp. A ( T ) . But since X,Y€C we can choose M = l p 

e 1 + e 

(take a subspace). So we deal with endomorphisms on l p. Here we have 

some additional properties which allow us to find 1 p- subspaces 

where | II Tx II - A(,r)|< e VII x II = 1 D 

If we look at proposition 3.1 and the remarks at the 
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beginning of § 3, the following question arises: 

When is I(T) = [r(T), A ( T ) ] ? 

In general I(T) is not equal to [r(T)» A ( T ) ] even in the C-case 

because we can show that the Isometry Spectrum of an endomorphism 

in X can split into two disjoint sets if X can be decomposed into 

the sum of two totally incomparable spaces, as 1 p© 1 ̂  p =(= q for 

example. 

3.2. PROPOSITION: 

Let X, Y be totally incomparable Banach spaces and P,Q 

denote the projections of X © Y to X and Y. Let i,j denote the 

inclusionsof X, Y in X e Y then 

I 1 T ) = I(PTi) U I(QTj) 

But even if such a decomposition is not possible, we have not been 

able to prove an affirmative result for X € C or X stable. In fact we 

need much more structure than 1 p-saturation. So the proofs of the 

following positive results are based to a large extent on the 

structure of the special C-spaces considered. 

3.3 THEOREM: 

Let X = cofl
P, L P[0,1] (Up<oo) and T eL(X). Then 

I(T) = [r(T),A(T)] 

IDEA OF PROOF: Let us take the l p-case. It is well-known that l p is 

not only in C but l p is saturated by one and only one l^"'-space, 

namely l p. 

By results of Mityagin [3,8] and Berkson [\] we know that 

these (complemented) l p-subspaces can be combined in a connected 

component of the apace of all subspaces induced with a suitable 

topology. This is the opening- or Schaffer topology [cf. 1 ] . If we 

denote (SX,d) the space of all subspaces of a Banach space X with 

Schaffer-topology d , we can show that the function 

A T : (SX,d) -> ]R 

M - A T(M) := A ( T | M ) 

is continuous. So the image Df.tfoe above mentioned connected 

l p-component (say M) is connected in IR i.e. A T(M) is an interval. 

Since by proposition 3.1 A T(M) ei(T) it is easy to see 
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that A T(M) fills up all of I(T). So I(T) is an interval, namely 

[r(T).„ A(T)] . 

The proof of the L^-result contains essentially the same . 

ideas. Here we have two connected subspace components in (SX,d) if 

p > 2 (those 1 and l p) according to the structure theorems of 

KadetSrPel60ynski [4]. So we have at most two disjoint intervals 

which form I(T). 

But it can be shown that they are never disjoint and that 

therefore I(T) must be an interval. 

For p < 2 the methods are similar. • 
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