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AR APPLICATION OF QUATERNIONIC ANALYSIS TO THE SOLUTION OF TIME=-
INDEPENDENT MAXWELL EQUATIONS AND OF STOKES® EQUATION 1)

Klaus Girlebeck / Wolfgang Sprissig

T, Indroduction
This paper presents an approximative golution of special boundary

valua problems of equations of mathematical physics in 3-dimen-
sional, in general multiple connected domains with smooth bounda-
ries, Several numerical methods are at present successful applied

for solving of these problems., However, the numerical effort of
difference methods, finite element methods or the Galerkin method

is very expensive. Therefore it is necessary to construct tech-
niques for use in practice, which give approximative solutions
by sm=ll computing-time and a good estimate of the error. The
boundary collocation method possesses these advantages, because
it is a synthesis of analytical and numerical techniques. The
classical functiontheory is am important practical tool for cal-
culation of plane problems., Basing on the results of R. FUETER
(Switzerland), A.W.BIZADSE (USSR) in the seventies several mathe-
maticians from various countries founded & functiontheory of qua-
ternions and the Clifford analysis, Important papers are written
by R.DELANGHE, F.F. BRACKX, F,SOMMEN (Belgium), J.BURES, V. SOU-
CBK (Czechoslovakia), P.LOUNESTO (Finland) , J.RYAN, A.SUDBERY
(England), B.GOLDSCHMIDT (GDR). The authors of this paper also
have written some publications about applications of quaternio-
nic analysis for construction of approximative solutions of boun-
dary value problems. They descibed in previous papers [5].[3&1[1ﬂ
an effective representation of solutions for some important egua-
tions of mathematical physics by the aid of a general operater
calculus, Some of the numerical methods recently developed make
use of the quatermionic calculus (see [3] ’ [7] ). In our paper

7

This paper is in final form and no version of it will be sub-

mitted for publication elsewhere,
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we shall apply the boundary collocation method for approximative
solution of Stokes’problem and for time-independent Maxwell equa-
tions. A special method of decomposition gives favourable approxi-
mative solutions for the user.

2._An operator calculus

Let u and v be fourdimensional vectors written in the form

u = (u,i) eand v = (v,?) with G = (uy,uy,u5) and V= (VyVou V3
By introduction of the non-commutative product

eV = (uovo - (Q,¥), uxv + uow? + voﬁ ) (2.1)
we obtain the structure of a skew field. If e = ¢(v,0,0,0) ,

e,= (0,1,0,0} , e,=(0,0,7,0) and ey= (0,0,0,1}, so the quater-
nion u allowed the representation

3
u = Zuiei

1=0

Furthermore let be Re u = u, Im u —Zuiei and U = u.e, -

Zuiei o It is evident, that hold true the relations

i=q

@08y = €408, 1 =0,123
e‘i°eJ = eJ"e'j_ i=3,1=1%23, §=123
ei = -Te, i=1,2,3
2
e, = Teo .
Let GC R3 be a bounded domain with sufficient smooth boundary
[=3G . The Banach spaces IQC , L g, WT of quaternionic
functions are defined by their components, which belong to the

spaces C!k ’ Lp, HB, W,j, . In the spaces HQ(G) will be introduced

a scalar product €u,v)‘q by the formula

(u,V)Q = j u(x)ev(x) 4G,
G

where u = (u ,--ﬁ)‘| is the conjugate quatermion,

For ueC1 (G} we can define the following operators. Let be
A2 o0, then by

V)‘ou = (-div ﬁ, grad u, + rot ﬁ)‘ + Au (2.2)

is designed the 3-dimensional analogue to the Cauchy-Riemann
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operator. The operator

(F, u)x) =#—;_Jr}‘(x-y)-°n('y)-u('y)t df‘y , x¢ ,  (2.3)
r

where

_ye (AosAlxl X ; cos A x| x . T
o0e (RN, (anhiale ST, T (hsinhix » L)

and n = (0,3) with n = (nT,nz,n3) the unit vector of the outer
normal on the surface | in the point y , is the 3-dimensional
analogue to the classical Cauchy integral operator , [5] .
Weakly singular integral operator

(T u)(x) =4 Jr'x- Yeu(y) de 2.4)

()\))()W (x-y y)y (2.4)
G

represented the 3-dimensional analogue to the T-operator of the

classical functiontheory.

For uecg(f') the operator

(S)\u)‘(x)} B%n‘j r(x-y) n(yleuly) df'y , x€ , (2,5)
r
exists in the sense of Cauchy’s principal value. We introduce the
projectors

(Qu)(x) = 277¢ ulx) - (5,ul(x)) (2.6)
(?&u)(x) =.2-$€ u(x) + CSAuI(x)) . (2.7}

Between all these operators exist numerable relations, which in-
cluded in a general operator theory ( see [3],[14],[14] ) . Final-
ly we need the multiplication operator

(Mu)(x) = nex) ( (1-2)""(2A-2) u,, & ), (2.8)

where 1le R {2}, mec}(c) .

These operators enable us to describe a lot of systemes of partial
differential equations in a favourable mgnner. We consider the
following system of equations ¢

V)\om V,‘ou =0 in G (2.9)

yo w =g - on I ) (2,10)

where by Ybu.is denoted the trace of the quaternionic function on .
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the boundary . Por particular choice of the numbers 1 and

and the function m(x) the following Dirichlet problems are ob-

tained : '

a) A\=0,1=0; m=1 lLaplace equation

B) A=0, 1=0; m= ﬁ (x) equation of the magnetic field
{ u permeability . dielectric
constant, a conductivity )

c) A=0 10,2 ; m=1 equations of linear theory of
elasticity ( 1 Poisson number)

ay NXzo, 1,=0 Helmholtz equation

B
n
-

Remark 2,1
For A= O the index A shall be omitted.

3. A boundary collocation method
Let GCR’ be a bounded domain with sufficient smooth boundary .

An elliptic differential operator with constant coefficients is
denoted by A . We look for the solution of the boundary value

problem

Au=0 in G
Ru =g on (3.1}
in suitable chosen spaces. The domain is denoted by D(A) € X ,
where X is a normed space and Y = Xnker A ., By K 1s designed
the set of coefficients furnished by an algebraic structure of a
ring, In Y 1is defined an addition "™ + " and a multiplication
*," by elements of K in a suitable manner, so that Y has the
structure of a right vector space. We look for an approximative
solution for the problem (3.1) in the form

n
u (x) = Z_ 'fd(x)“oaj : (3.2)
=

where the coefficients aje K , J =% eeeyn , shéll be defined
by the equations

(Run)(xj) = 8€xj) [] xJe rl ] 3'1""’11 (303)-
Let us consider the boundary value Problem

V)‘vMV_xwa 0 in

G
fou = & on I (3.4)
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‘where 1, and m fulfil the above-mentioned premises., Then the
following theorem holds true

Theorem 3,1 : :
Let be geHg((r')‘: s>2"1; A, 1 and m(x) is chosen as in a} c¢c)
or d) . Then it follows

. -1 |
u=v+ TN w (3.5),

where v and w are the unique solutions of the Boundary value
problems

in G
on P ( 3'0 6)

Vov -

Yo' =

Sl o
=

and
w=0 in @G

YOW-‘W = a'hg on r' (307)’

Remark 3.t
By realization of the assumption in the case b) we obtain the

same result, if m(x) = const., . In the general case we also con-
Jecture the correctness of Theorem 3.1 .

Theorem 3,2 [4]

Let be GI, G, GA bounded domains with sufficient smooth bounda-
ries FI=3G‘I , =3¢ and fy=3G, , so that EICG and ECGA .
Furthermore the sets of points {xj}:?lz and {yj};:ff'l are
dense subsets of PA respectively I"'I e Then it holds for s>O0:

{r‘ (x-xi)} is Q - complete in H§.(G)‘h ker VAO ’
{yorA(;x—xi)}} is Q - complete in HL (M) NIm P,
iYor)‘(‘x'yi)} is Q - complete in (MHaIm g) .
{Yor)‘(x-xi)‘.s U{YorA(X'yi)} is Q - complete in HQ(T') .

Remark 3,2 . :

The proofs in the cases a), c) and 4} can be found in [4] ,[5].
Applications to the case ¢) are also included in [14]. The paper
[6]18 dedicated to the investigation of this method in the case
of parabolic equations. A transfer of these results to the bihar-
monic equation is made in the paper [10].

Remark 3.3

On the base of the system {r)jwe can construct systems, which have
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too, and a=b= ¢0,0,0,0). System of equations (4.4) we can rewrite
in the simple form
VeE =9

PoH =oE (4.5)

By help of the multidimensional generalized Vekua’s theory (see[{b
we receive the representations for the solution

E =T9+¢E

(4.6)
H = TaE +¢,

where ¢E and ‘bH belong to ker fo « By substitution of E in
in the second equation it follows

E =T9 +¢;

(4.7)
H = TaTQ+ Taf, + $g

On the assumption Ylez h , it follows immediately ¢H =F h,
The multidimensional boundary formulas of Plemelj-Sochotzki
(see [1]) leads to the formula

Qh =y, T3+ pTaFdy (4.8)

on the surface [ .

Equation (4.8) can be multiplied by «', because o is a scalar
quantity greater than zero. The operator yaTF is coEtinuously
invertible in the pailr of spaces [ngllm P, Hgn Im QJ as shown
in a general case later. Hence, it follows

¢ = L' Py, TFY G0 - Py Yy 125 (4.9)
By putting in (4.7), we obtaim

E = o'F(p TF)"'Qh + (I - F(y,TF) 'y ™) Tg (4.10)

H = TF(y TF)"'Gh + Fh + «™(I - F(y,TF) 'y T} TS -  (4.11)
The operator (I = F(TF)'1YOT; = 1E is the Lg; orthoprojector

onto the subspace VOW; Q(G} . We obtain
-]~ ’
E = 4 Py, TF) 3+ g
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better numerical properties., In the paper [7] are described a
method for construction of such a system and numerical comparisons
with the Galerkin method.

4, An approximative solution of the time-independent Maxwell equa-
tions

In the domain G is an electric charge distributed with the densi-
vy 8,(x) = 9,. We shall compute the stationary electric field

E = (’E1,E2,E3) and the stationary magnetic field H = (H1,H2,H3) ’
if there are given the dielectric constant € =€(x)}, the permeabi-
1ity m=uix), the electric conductivity #=%(x) and the magne-
tic field on the boundary ' .

The Maxwell equations read as follows in the time-independent case

° (4.1)
*®E R

aivel = g v p
rot E=0 rot

ok Beoh)
[}

By using of a well-known multiplication rule it-holds

divel = 8, A (4.2)
rot €E = grad€ x E

atvull = 0 a (4.3)
rot wH = RE + grad/,xH

By setting E = (0, € E) and H = (O,FI?I)" we obtain fourdimen-
sional vectors, which are needed for our method. We denote by

a = (0, €‘grad£) s b = (’O,F“gradfa)i‘ and 9= (—90,0,0,0) . It fol-
lows by using the Nabla operator in the sense of the quaternionic
multiplication from (4.2) and (4.3}

VoE = 9+ Im(acE)
VeH =f4_;sE + Im(beH)
vy .

The abbreviation e= < leads to the system of differential
equations

VeE =9 + Im(acE)

(4.4)
VeH = o E + Im(beH)

Pirst let &, 4 and ® be constant quantities. Therefore o = const.
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. -1
H = TF(y,TF}~'Qh + Fh hm'l;rg
From the paper[13] we know, that the equation

YoTF®y =

is in a certain sense equivalent to the Dirichlet problem follows
4;5 = P(TF)"* Gh € ker Ve .
By introducing the orthopréjector

T,= P(TF)™"

onto the subspace ker an LS(G) finally we obtain

E ”"I“;H + 0,7 (4.12)
H=T¢y+Fh+alTTQ (4.13)

Now we shall approximate each of the terms in the formulas (4.12)
and (4.13). Let 'heng(p) then holds

n
h = Jin _’foor(‘x-xi)oz;gn)‘ + yorix-yy)eb{™)) (4.14)
a4
in H (f‘), where aj(_n) and bin) are unknown quaternionic con-
stands. F is a continuous operator in [Hs(f'), go+o- S(G)]
ker F = HQ(P)I\ InQ and r(x-x;) is the generalized analytical
continuation of Yor(x-xi) « Therefore from (4.14) follow the
representations

n
Fh = Lim r(x-xi)oa(n) in Hg+°'5(c-) (4.15)
h = o0
and 24 (n) .
an = Lin Zxor(x-yi)ﬂb n in Hy(MY (4.16).

We mention, that Im P = ker § . The quaternionic function
’I’cPH H8+°'5 (G) is a solution of the Dirichlet problem

Av=0 in @
xov . ah on P (4017)

The boﬁndary value problem (4,17} is correctly given. Hence ) Eh
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can be approximated by (4.16) and the method (3.2)-(3.3) is appli-
cable. This leads to
& - - (n)
Téy = Iin (x xi] ci in _HZ{O.S(G)

h=> oo

(4.18)

and after derivation by Ve

$H = Lim Z(x-—x )|x-xi\ -3 (n) in Hg'o's (¢ .

AH

The item T'E1Tg is the solution of the boundary value problem

bw=3 in G (4.19)
you =0 on [

Problem (4.19) can be transformed by subgtraction of a speeial so-

lution K9 (for instance, Kg=1 r -y1'19 dG_ )} into a problem of

the form (4.17), which can be solved again by (3.2)-(3.3) . Now, we

have

THTg = ILim Z|x-x ] dgn) K¢ (4.20)
h-'ﬂh
and
T,r9= Lim lZ (x-ximx-xir3 din) (4.21)
u
Finally, we get to the formulas
a)
E = %] I.im Z(x—x }x-x4[ e e (n) + LimZ (x-x; }| x=x4| ~3a d; +
hY)o j=
-t '+ PES . o (4.22)

H = Lim lx-xirr c§ n) + lim Zr(x-x ) a((n) +,(Lim Z (x-xir dw
n-ld.-.
: s uKg T (4.23)

Remark 4.1

The advantage of the boundary collocation method to get differen-
tiable solutions is comnsequently used in the construction of the
single terms of the representation of solutions (4.22) and (4.23).

Remark 4.2

The presented method allowed the above-constructed system of dif-
ferential equations to be split and the numerical solution to be
attributed to the research of two simple boundary value problems
(for h and K¢ ). Now these boundary value problems can be easily
computed by the help of boundary collocation methods or other ap-
proximative methods in dependence of the existing software. It is
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also possible.to use the obtained expressions of the relations
(4.22) and (4,23) for an approximative solution of system (4.5).

Now let us consider the case in which R=%(x) is a smooth function
of the class C'(G). The coefficients € and M are for the present
constants, Therefore o is not a constant, it is also a smooth
function of the class 01(6) N

By assumption of an existing inverse operator to the boundary ope-
rator y TaF in the pair of Banach spaces [ImanLg(r'), IminLg(P)‘]
it follows for the analyticvquaternionic functions ‘PE andcpH

¢y =™ 14~
op = P P h - y (TaTe))

and hence for E and H

E = P(p,T«F) Gk + (I - P(p TaF)" 'y TOTS (4.24)
F = ToaP(p TaF)"'qh + Fh + Ta(T - Fy TF)y Tu)Tg (4.25),
It remains to show the existence of the operator ( ngF)" . For

this purpose, we construct by help of the scalar product in the
space Lg(G)

S— 01 ’
(Vo.,;Vn,u)LZ ‘= \feaPouou d @ s UEW, Q(G) .
Q 1]
G
By using the unit quaternions ey i=0,1,2,3 holds
3 3 3
Vo¢v e u S'Zeig-t(q ejg_ﬁ)zukek (4.25).
isq ¢ J=1 k=Q
Xt follows
3 J

3
éV’d V'u-uadG’:jG(%'ZoeieJ kel‘d.-:—xjuk Zule1 dG =
I(“&Z Z €8,e °1u.“k Z"‘ulel ) 4G =
1§*1 k=0
S,‘Z ekeﬁ e fou dG’ - SJa ofu ac sj.qhn a6 Z 0

G
PoaVouseu dG = 0 follows (ou=0

G ll° 6
It is easy to obtain that from j

and finally G .
(V-.L Vou—,u.);:in o eﬁf aG 7 mi"nd)tfblhllgq(s) . (& 27)
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Inequality (4.27) shows posifive definiteness of the operator

(VeaV ,yo) in Wz, Q(G)J. Hence,we have proved the existence of a so-
, .

lution u of the boundary wvalue problem

Vealou = 0 in G (2.28)
yor =& on r .

By applying the multidimensional Vekua’s theory [8] ) [1 2"] it fol=
Tows from (4.28)

u-Fg+TJ'¢,

where <|>e ker V° o« This representation leads to the formula

Ww=T<F¢.

Now the existence of the operator (T&'F) '€ I.(LgnIma,LgnImf) is
obvious, because for all geLg a quaternionic function ?e ker 7-
can be found, By setting g = O on [ we obtain

0 = You'YOT“?Fxo* ’ yo¢€h§

and because of the uniquness of the solution of (4.28) Ti’F#s (o]
and so $¢=0,

Let us now consider the case, if £€=§£ (x)} and p:/..(x) are scalar
functions which depend on x . First we shall obtain special solu-
tions of the system of differential equations by using the follo-
wing iteration method

E, = Tg + TIm(acE _,) 14.29)

H = TaE, + TIm(beH _,) (4.30)

where E, = },_j’.n-x’ En . For proving the convergence of this method
let us magke the following calculations., It is true

' n-1
En- En-1l = TIm ao(En_1- En-zl, = (TIm ac) T if Eo" O,
therefore

-1
Ep = g‘ (BB _¢) =TI+ TImac+ ... + (TIm ao)™"' Zg
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Assuming I TIm a-lxgm), £ q <1 existed the infinite sum

E, = IZ (TIn ev)¥Pg | | (4.31)
20

Kccordingly, holds by setting Hb = 0
: -1, , m-*
Hy- By 4 = (TIm bo)"" ' (H,-H ) = (TIm be)"  'TaE,
and for [(TIm b*ILg(G) < q<1 it follows

o0 .
Hy=Iim B = 2 (TImb.)*r4E, (4.32)

"y o k=0

The pair (E‘,H,) fulfils the systems of differential equations
(4.4). By applying the multidimensional generalized Vekua’s theory
we immediatly obtain the general solution

Epa= T (g + In(asE,) ) + by

Hy,= T«Pg + T(«TIm(aeE,) + ¢¢E.’ + Im (beH,) ) + Pyx.
*

With the abbreviations

¢h = (TdT)-Tah ’ Eﬁ: F(xon F)-1yo T E,d.’ I - -i;‘dd

we get to the formulas (4.33) - (4.34)
By =078+ $p -T,,(«TIn(acE,) + In(beH,)) (4.33)

Hye= Tho + To(T (g + In(acE,) ) +LIm(boH) + ¢, (4.34).

5. The solution of Stokes’equation

By the help of the above-introduced operato‘r calculus, we want to
prepare the solution of Stokes’system by an integral representa-
tion in such & manner, that a computation by a boundary collocation
method is easy to do. Stokes’system means [15]

Au -Up =¢ in G (5.1)
divu =g (5.2)
You=h on [ (5.3},

The necessary condition
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5 g dG = S(n,h)ﬁ ar : (5.4)

€) r :
is true. This system describes the stationary motion of a homoge-
neous viscose fluid for small Reynol& s numbers. Here u =(0, u),'
= (u1,u2,u3) mean the velocity of the fluid and p the hydro-
static pressure. Function g is a measure for the compressibility
of the fluid. In the case g = 0 the fluid is not compressible.
The boundary condition (5.3) means an adhesion at the boundary of
the domain for h = 0 , A detailed dicussion of the references is
given by A. VALLI [15] and in the book of O.A. LADYZENSKAJA [9]

The generalized Vekua’s theory gives us the possibility to write
equation (5.1) in the form

u = Tp + ¢+ T, + Tr y Py ker Yo (5.5).
By putting (5.5) in (5.2) we receive

g=divu=divTp +d1v1m¢2+d1v1mm¢ + div Im Tf=
= - RefoT p - Re [°$, - Re [sT ¢, - Re Jon2¢ =
= - p - Re($, + ),
We obtain for p

p = ~ (g + Re( $, + Tf)} (5.6)

By setting the expression (5.6) in (5.5} we get to a representa-
tion for u '

u=-Tg +TInd, + TImT¥ + b, (5.7) |

It is easy to see, that a spezial solution is given by
(ugyp,) = ( -Tg + TIm Tf, -g-Re Tf ) .o (5.8)
With v =y -u, and q = p-p, it follows

Av ~> Vq =0 4n G . (5.9)
div v= 0 (5.10)

YoV = B on [ (5.11)
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where H =h + yoTCIm Tf - g ) . It is well-known that for solva-
bility the condition

j(H,n)‘ af =0 | (5.12)
r

is necessary, where (H,n} = H1nt+32n2+H3n3 .

This condition can be formulated in terms of h and g in the
following way :

0= j(H,n) aP = j(h,n)-dr‘ + Jxonm e af -‘(Jng ar .
r r r r
By using the theorem of Gauss-Ostrogradski we get

IrbTIm Tf 4 -J;iv TIm Tf 4G = O

and G
jxo Tgd = I g dG
G

andrtherefore
é[ g 4G -J(h,n) ar ) (5.13)
P

For that reason, the condition €5.13) is necessary for solution
(see [15]). Let us now solve the new problem (5.9)-(5.10)-(5.11) .

By using (5.6) and (5.7) we obtain

q=-g-Ro, (5.14)
v = TImd).l +¢2 (5015)-

We shall approximete the function ¢1 by

n

¢ = ] rlxxreay (5.16)

(£ Y]
where r(x-xi) = ro(x-in. With the notations

#3) 2 x93 xp)

J =123
Ix - xiF

finally follows
h

TIm*gn) = Z{(Tr(”eﬂr aj(_o) + (Tr(z)'e1) ap) - (Tr‘”e,) aj(.z) +

l=g
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(TrCZ}az) aio) + (Tr(B)ez) aim) -(Tr(T)ez) a£3) +
+(2le) o + (rr{Ve) a{?) —(zr(Pejy oV | (5.17)
The functions Tr(17 can be calculated anslogously to the paper

r14 » Do 28?] The calculation is made with accuracy of a func-
tion, which belongs to ker 'O ¢ This analytic function shall be
added to ¢'2 and the resulting function is wanted by the ansatz

(m)
. 7 rtrerydeg (5.18)
i=1 :

where cy are quaternionic constants. These shall be defined by
equations, which arise by putting some collocation points for x-

in the formula
m

Z r(x-x;Joc; = (Fh}(x) : (5.19)

iz
For instance, (Fh)(x) can be calculated by (4.15). We obtain the
constants aid by using the boundary value condition (5.10) from
the system of equations

(1In ${*0)zp) = @Mzy) 3= Tyeenam

where (QH)(x) is represented by (4.76) . Consequently the appro-
ximative solution of Stokes’system (5.9)-(5.10}-(5.11) is given by

v o T1m¢$n) z (o, (x-xi)lx - xy )°°i (5.20)

and n 3 i=1
)R +Z Z »(3) 8§J) (5.21)
i=4 j-c
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