USA 14

Frank Sommen
 Spingroups and spherical means II

In: Zdeněk Frolík and Vladimír Souček and Marián J. Fabián (eds.): Proceedings of the 14th Winter School on Abstract Analysis. Circolo Matematico di Palermo, Palermo, 1987. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplements No. 14. pp. [157]--177.

Persistent URL: http://dml.cz/dmlcz/701894

Terms of use:

© Circolo Matematico di Palermo, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

SPINGROUPS AND SPHERICAL MEANS II

F. Sommen (*)

Abstract. In this paper we study generalized mean values of functions in $R^{\text {m }}$ over spheres of any codimension, by making use of representations of Spin(m) on spaces of functions in the Clifford algebra over R^{m}. This leads to several versions, refinements and generalizations of the classical Euler-Poisson-Darboux equation. Furthermore for spheres of codimension 2 we interprete these equations in terms of complex Clifford analysis.

Introduction. The notion of spherical means of a function is known to be useful in partial differential equations as is shown by F. John (see [6]). Especially for operators, which may be exnressed in terms of Laplacians (and powers of it), it is anplicable, because of the Darboux equation

$$
\Delta_{x} f(\vec{x}, r)=\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{m-1}{r} \frac{\partial}{\partial r}\right) f(\vec{x}, r),
$$

since it transforms the Laplacian into a one-dimensional onerator. In our previous paper [10] we extended spherical means by using the representations of $\operatorname{Spin}(\mathrm{m})$ instead of $\mathrm{SO}(\mathrm{m})$ and so-called spherical monogenics instead of spherical harmonics. Snherical monogenics are, roughly speaking, hypercomplex generalizations of the classical complex powers $z \rightarrow z^{k}$, $k \in Z$, i.e. they are homogeneous solutions of a Dirac type operator D, with values in a Clifford algebra. These ideas fit completely into the general setting of proun representations and integral geometry as is being studied by S. Heloason in [3]. Our previous paper [10] was restricted to spheres of codimension one and so the spherical means have only one extra dimension, the radius of the sphere. Hence the Darboux equations link this radial dimension r to the space variable $\vec{x} \in R$.
(*) Senior Research Assistent supported by N.F.W.O. Belgium

In this paper we study mean values of functions over snheres of any dimension. Such spheres are paranetrised by their center \vec{x}, the radius r and an s-vector ω, which represents the axis so that spherical means depend on coordinates (\vec{x}, r, ω) where r and ω are extra dimensions. Hence there exist Darboux equations which link the radius r with the space variable \vec{x}, called radial Darboux equations, and equations which express the " ω-derivatives" in terms of the space derivatives, called angular Darboux equations.
In the first section we recall the main definitions and pronerties of [10].
The second section is devoted to spherical means of codimension 2. In this section we link the radial and angular Darboux equations together in such a way that we obtain solutions of the complex monogenic system $\left(D_{x}+i D_{y}\right) f=0$,

$$
D_{x}+i D_{y}=\sum_{j=1}^{m} e_{j}\left(\frac{\partial}{\partial x_{j}}+i \frac{\partial}{\partial y_{j}}\right)
$$

being a complex Dirac type operator in C^{m} (see [8],[11],[12]). The study of spherical means of any codimenson is more involved To that end we make use of functions defined in the entire Clifford algebra C_{m} or in its real part
R_{m} or in the spaces of s -vectors $R_{\mathrm{m}, \mathrm{s}}$ (see also [4]). The study of Spin(m)-representations is done in section 3 .
In section 4 we study the Darboux equations for snheres of any codimension.

Preliminaries. Let $\left\{e_{1}, \ldots, e_{m}\right\}$ be an orthonormal basis of R^{m}. Then by C_{m} we denote the complex Clifford algebra constructed by means of this basis. Hence a general element $a \in C_{m}$ is of the form $a=\sum_{A \subseteq N} e_{A} a_{A}, a_{A} \in C, N=\{1, \ldots, m\}$, where for $A=\left\{\alpha_{1}, \ldots, \alpha_{h}\right\}, \alpha_{1}<\ldots<\alpha_{h}$, $e_{A}=e_{\alpha_{1}} \ldots e_{\alpha_{h}}$.

The product in C_{m} is determined by the relations

$$
e_{i} e_{j}+e_{j} e_{i}=-2 \delta_{i j} ; i, j=1, \ldots, m, e_{\phi}=1
$$

By R_{m} we denote the real Clifford algebra over R^{m}.
Every $a \in C_{m}$ may uniquely be written into the form $a=[a]_{0}+[a]_{1}+\ldots+[a]_{m}$, where [a] ${ }_{s} \in C_{m, s} ; s=0, \ldots, m$ and where $C_{m, s}$ is the space of complex s-vectors $C_{m, s}=\left\{\left|\sum_{A}\right|=s a_{A} e_{A}: a_{A} \in C\right\}$. The space of real s-vectors will be
denoted by $R_{\mathrm{m}, \mathrm{s}}$.
An involution on C_{m} is given by $\bar{a}=\sum_{A \subseteq N} \bar{a}_{A} \bar{e}_{A}$, where \bar{a}_{A} denotes complex conjugation and $\bar{e}_{A}=\overline{\mathrm{e}}_{\alpha_{\mathrm{h}}} \ldots \overline{\mathrm{e}}_{\alpha_{1}}, \overline{\mathrm{e}}_{\mathrm{j}}=-\mathrm{e}_{\mathrm{j}} ; \mathrm{j}=1, \ldots, \mathrm{~m}$. Notice that on R_{m}

$$
\bar{a}=[a]_{0}-[a]_{1}-[a]_{2}+[a]_{3}+\ldots
$$

An inner product on R_{m} is given by $\langle\mathrm{a}, \mathrm{b}\rangle=[\overline{\mathrm{a}} \mathrm{b}] \mathrm{c}$. This inner product coincides with the one induced from $R^{2^{n}}$. The norm of $a \in C_{m}$ is given by $|a|^{2}=\sum_{A}\left|a_{A}\right|^{2}$ and satisfies $|a b| \leqslant 2^{m}|a||b|$.
By the identifications $R^{\mathrm{m}+1}=R_{\mathrm{m}, 0}+R_{\mathrm{m}, 1}$ and $R^{\mathrm{m}}=R_{\mathrm{m}, 1}, R^{\mathrm{m}+1}$ and R^{m} are naturally imbedded in R_{m}. Hence $\left(x_{0}, x_{1}, \ldots, x_{m}\right) \in_{R}{ }^{\mathrm{m}+1}$ will be identified with $x_{0}+\vec{x}, \vec{x}=\sum_{j=1}^{m} x_{j} e_{j}$. The inner product in R^{m} will be denoted by $\langle\overrightarrow{\mathrm{x}}, \overrightarrow{\mathrm{y}}\rangle$.
Let $\Omega \subseteq R^{\mathrm{m}}$ be open; then $\mathrm{f} \in \mathrm{C}_{1}\left(\Omega, C_{\mathrm{m}}\right)$ will be called left monogenic in Ω if $D f=0$, where $D=\sum_{j=1}^{m} e_{j} \frac{\partial}{\partial x_{j}}$ is a generalized Cauchy-Riemann operator, called Dirac operator or vector derivative.
A function $P_{k}(\vec{\omega})\left(\rho_{C_{k}}(\vec{\omega})\right), \vec{\omega} \in S^{m-1}$ is called inner (outer) snherical monogenic of degree k if $r^{k} P_{k}(\vec{\omega})\left(r^{-(k+m-1)} ?_{k}(\vec{\omega})\right)$ is left monogenic in R^{m} (in $\left.R^{\mathrm{m}} \backslash\{0\}\right)$.
Every spherical harmonic admits a unique decomposition $S_{k}=P_{k}+Q_{k-1}$ into spherical monogenics.
By ω_{m} we denote the area of S^{m-1}.

1. Basic representations of Snin(m)

Let $s \in \operatorname{Spin}(m)$ and $f \in L_{2}\left(S^{m-1} ; C_{m}\right)$. Then we consider the basic representations H_{0} and L of $\operatorname{Spin}(m)$, given by $H_{0}(s) f(\vec{x})=f(\overrightarrow{s \times s})$, $L(s) f(\vec{x})=s f(\vec{s} \vec{x} s)$. H_{0} corresponds to the usual representation of SO(m), while L corresponds to spin 1/2-representation.
The Lie algebra of $\operatorname{Spin}(m)$ is the space $R_{m, 2}$ of real bivectors; the elements of which are of the form $\sum_{i<j} \mathrm{x}_{\mathrm{ij}} \mathrm{e}_{\mathrm{ij}}, \mathrm{x}_{\mathrm{ij}} \in R$. Hence the
infinitesimal representations of H_{0} and L are given by

$$
d H_{0}\left(e_{i j}\right)=-2 L_{i j}, d L\left(e_{i j}\right)=-2 L_{i j}+e_{i j},
$$

where $L_{i j}=x_{i} \frac{\partial}{\partial x_{j}}-x_{j} \frac{\partial}{\partial x_{i}}$.
The Casimir operators $\mathrm{C}\left(\mathrm{H}_{0}\right)$ and $\mathrm{C}(\mathrm{L})$ of H_{0} and L are hence given by

$$
C\left(H_{0}\right)=\Delta_{S}, \quad C(L)=\Delta_{S}+\Gamma-\frac{1}{4}\left(\frac{m}{2}\right),
$$

where Δ_{S} is the Laplace-Beltrami operator and $\Gamma=-\sum_{i<j} e_{i j} L_{i j}$,
the spherical Dirac operator (see [7] ,[9] ,[13]).
The eigenspaces of Δ_{S} are the classical spaces H_{k} of soherical harmonics of degree k (eigenvalue- $k(k+m-2)$); the eigensnaces of $C(L)$ are denoted by M_{k}.
M_{k} is called the space of spherical monogenics of degree k. As $\Delta_{S}=\Gamma(m-2-\Gamma), H_{k}$ and M_{k} are of the form

$$
H_{k}=M_{+}, k^{+M_{-}, k} \quad, M_{k}=M_{+}, k^{+} M_{-, k},
$$

where $M_{ \pm, k}$ are the eigenspaces of Γ with eigenvalues $-k$ and $k+m-1$ (see [7],[9], [13]).
The elements of $M_{ \pm, k}$ are called inner and outer snherical monogenics of degree k and are denoted by $P_{k}(\omega)$ and $\Omega_{k}(\omega), \omega \in S^{m-1}$. The projections on $H_{k}, M_{k}, M_{+, k}, M_{-, k}$ are respectively denoted by $S_{k}, \Pi_{k}, P_{k}, O_{k}$.
We have that $Q_{k}(f)=-\vec{\omega} P_{k}(\vec{\omega} f)$ and

$$
P_{k}(f)(\vec{\omega})=\frac{(-1)^{k+1}}{\omega_{m} k!} \int_{S^{m-1}}\left\langle\vec{\omega}, \nabla>^{k}\left(\frac{\vec{u}}{|\vec{u}|^{m}}\right) \vec{u} f(\vec{u}) d S_{u} .\right.
$$

Let $D=\sum_{j=1}^{m} e_{j} \frac{\partial}{\partial x_{j}}$; then $D=\vec{\omega}\left(\frac{\partial}{\partial r}+\frac{1}{r} \Gamma_{\omega}\right)$. Hence if P_{k}, Q_{k} are spherical monogenic, $r^{k} p_{k}(\vec{\omega})$ and $r^{-(k+m-1)} \Omega_{k}(\vec{\omega})$ are left monogenic in $R^{m} \backslash\{0\}$. As D is invariant under the renresentation L, D commutes with $\Pi_{k}=P_{k}+Q_{k}$. This leads to a refinement of the classical theory of spherical means (see [6], [10]) of which we recall the main definitions and properties.
Let f be a function in a domain of R^{m}. Then we consider the refined spherical means

$$
\begin{aligned}
& P(f)(\vec{x}, r)=\frac{1}{\omega_{m}} \quad \int_{S^{m-1}} f(\vec{x}+r \vec{\omega}) d S_{\omega}, \\
& Q(f)(\vec{x}, r)=\frac{1}{\omega_{m}} \quad \int_{S^{m-1}} \vec{\omega} \cdot f(\vec{x}+r \vec{\omega}) d S_{\omega} .
\end{aligned}
$$

These refined spherical means satisfy a first order Darboux system
of the form

$$
\begin{aligned}
& D_{x} P(f)(\vec{x}, r)=\left(\frac{\partial}{\partial r}+\frac{m-1}{r}\right) \cap(f)(\vec{x}, r) \\
& D_{x} Q(f)(\vec{x}, r)=-\frac{\partial}{\partial r} P(f)(\vec{x}, r)
\end{aligned}
$$

which foliows straight from $\Pi_{0}\left(D_{x} f(\vec{x}+\vec{y})\right)=D_{y} \Pi_{0} f(\vec{x}+\vec{y})$, where $\Pi_{0}(f)(\vec{x}+\vec{y})=P(f)(\vec{x},|\vec{y}|)-\vec{y} /|\vec{y}|$. $\cap(f)(\vec{x},|\vec{y}|)$.
Hence we may generalize these spherical means to

$$
\Pi_{k}(f(\vec{x}+\vec{u}))(\vec{y})=P_{k}(f(\vec{x}+\vec{u}))(\vec{y})-\frac{\vec{y}}{|\vec{y}|} P_{k}\left(\frac{\vec{u}}{|\vec{u}|} f(\vec{x}+\vec{u})\right)(\vec{y})
$$

leading up to the generalized Darboux system

$$
\begin{aligned}
& P_{+, k}(D f)=\left(\frac{\partial}{\partial r}+\frac{k+m-1}{r}\right) P_{-, k}(f), \\
& P_{-, k}(D f)=\left(-\frac{\partial}{\partial r}+\frac{k}{r}\right) P_{+, k}(f),
\end{aligned}
$$

where for $r=|\vec{y}|$,

$$
\begin{aligned}
& P_{+, k}(f)(\vec{x}, r)=P_{k}(f(\vec{x}+\vec{u})(\vec{y}) \\
& P_{-, k}(f)(\vec{x}, r)=P_{k}\left(\frac{\vec{u}}{|\vec{u}|} f(\vec{x}+\vec{u})\right)(\vec{y}),
\end{aligned}
$$

and where for fixed $(\vec{x}, r), P_{ \pm, k}(f)(\vec{x}, r)$ have values in $M_{+, k}$.
In terms of the Gegenbauer polynomials $C_{V}^{\lambda}(\theta)$ (see [5]), we have the following explicit formulae

$$
\begin{aligned}
& P_{+, k}(f)(\vec{x}, r)=\frac{1}{\omega_{m}} \int_{S^{m-1}}\left(C_{k}^{\frac{m}{2}}(\theta)+\vec{\omega} \vec{u} C_{k-1}^{\frac{m}{2}}(\theta)\right) f(r \vec{u}+\vec{x}) d S_{u} \\
& P_{-, k}(f)(\vec{x}, r)=\frac{1}{\omega_{m}} \quad \int_{S^{m-1}}\left(\vec{u} C_{k}^{\frac{m}{2}}(\theta)-\vec{\omega} C_{k-1}^{\frac{m}{2}}(\theta)\right) f(r \vec{u}+\vec{x}) d S_{u}
\end{aligned}
$$

where $\vec{y}=r \vec{\omega}, \vec{\omega} \in S^{m-1}$ and $\theta=\langle\vec{\omega}, \vec{u}\rangle, \vec{u} \in S^{m-1}$.
2. Spherical means of codimension 2

In view of its importance in complex analysis we treat spherical means of codimension 2 senarately.
Let $\Omega \subseteq R^{m}$ be open and put

$$
\hat{\Omega}=\left\{(\vec{x}, \vec{y}): \vec{x} \in \Omega, \vec{x}+S_{y} \subseteq \Omega\right\}, \quad S_{y}=\{\vec{u}:|\vec{u}|=|\vec{y}|, \quad<\vec{u}, \vec{y}>=0\}
$$

The component of $\hat{\Omega}$ containing Ω is called the complex harmonic hull of Ω (see e.g. [1]).
First we introduce the 0-th order spherical means by

$$
\begin{aligned}
& P^{1}(f)(\vec{x}, \vec{y})=\frac{1}{\omega_{m-1}} \int_{S^{m-1}} \delta\left(\langle\vec{u}, \vec{\omega}>) f(\vec{x}+r \vec{u}) d S_{u}\right. \\
& Q^{1}(f)(\vec{x}, \vec{y})=\frac{1}{\omega_{m-1}} \int_{S^{m-1}} \vec{u} \delta\left(\langle\vec{u}, \vec{\omega}>) f(\vec{x}+r \vec{u}) d S_{u},\right.
\end{aligned}
$$

where $\vec{y}=r \vec{\omega}, r=|\vec{y}|$ and $(\vec{x}, \vec{y}) \in \hat{\Omega}$.
From the codimension 1 case we immediately obtain the radial Darboux equations

$$
\begin{aligned}
& \left(D_{x}-\vec{\omega}<\vec{\omega}, D_{x}>\right) P^{1}(f)=\left(\frac{\partial}{\partial r}+\frac{m-2}{r}\right) Q^{1}(f), \\
& \left(D_{x}-\vec{\omega}<\vec{\omega}, D_{x}>\right) Q^{1}(f)=-\frac{\partial}{\partial r} P^{1}(f)
\end{aligned}
$$

However, this only expresses the radial part of the \vec{y}-derivatives in terms of \vec{x}-derivatives. Of course there will also be an angular version of the Darboux equations. This is obtained in

Theorem 1. $P^{1}(f)$ and $Q^{1}(f)$ satisfy the angular Darboux equations

$$
\begin{aligned}
& \mathrm{r} \vec{\omega}<\vec{\omega}, D_{x}>P^{1}(f)=\left(1-\Gamma_{y}\right) Q^{1}(f) \\
& r \vec{\omega}<\vec{\omega}, D_{x}>Q^{1}(f)=\Gamma_{y} p^{1}(f),
\end{aligned}
$$

where $r \vec{\omega}=\vec{y}$ and $\Gamma_{y}=\sum_{i<j} e_{i j}\left(y_{j} \frac{\partial}{\partial y_{i}}-y_{i} \frac{\partial}{\partial y_{j}}\right)$.
Proof. As $\delta(\langle\vec{u}, \vec{\omega}\rangle)=|\vec{y}| \delta(\langle\vec{u}, \vec{y}\rangle)$, we have that

$$
\begin{aligned}
& \Gamma_{y} P^{1}(f)(\vec{x}, \vec{y}) \\
& \quad=\frac{|\vec{y}|}{\omega_{m-1}} \int_{S^{m-1}} \Gamma_{y^{\prime}} \delta(<\vec{u}, \vec{y}>) f(\vec{x}+|\vec{y}| \vec{u}) d S_{u} \\
& \quad=\frac{1}{\omega_{m-1}} \int_{S^{m-1}} \delta^{\prime}(<\vec{u}, \vec{\omega}>)(\vec{u} \wedge \vec{\omega}) f(\vec{x}+r \vec{u}) d S_{u} \\
& =-\frac{1}{\omega_{m-1}} \int_{S^{m-1}} \delta\left(\langle\vec{u}, \vec{\omega}>)<\vec{\omega}, D_{u}>(\vec{u} \wedge \vec{\omega} f(\vec{x}+r \vec{u})) d S_{u}\right. \\
& =r \vec{\omega}<\vec{\omega}, D_{x}>Q^{1}(f) .
\end{aligned}
$$

Similarly we obtain that

$$
\begin{aligned}
\Gamma_{y} Q(f) & =-\frac{1}{\omega_{m-1}} \int_{S^{m-1}} \delta(<\vec{u}, \vec{\omega}>)<\vec{\omega}, D_{u}>[\vec{u} \wedge \vec{\omega} \cdot \vec{u} f(\vec{x}+r \vec{u})] d S_{u} \\
& =-\frac{1}{\omega_{m-1}} \int_{S^{m-1}} \delta(<\vec{u}, \vec{\omega}>) \vec{u} \wedge \vec{\omega}\left[\vec{\omega} f(\vec{x}+r \vec{u})+\vec{u} r<\vec{\omega}, D_{x}>f(\vec{x}+r \vec{u})\right] d S_{u} \\
& =Q^{1}(f)-\dot{r} \vec{\omega}^{\prime}<\vec{\omega}, D_{x}>P^{1}(f) .
\end{aligned}
$$

Notice that the radial Darboux equations follow from the L-invariance of D, together with the commutation relations

$$
\begin{aligned}
& {\left[D_{x}-\vec{\omega}<\vec{\omega}, D_{x}>P^{1}\right]=\left[D_{x}-\vec{\omega}<\vec{\omega}, D_{x}>, Q^{1}\right]=0,} \\
& {\left[\vec{\omega}<\vec{\omega}, D_{x}>, P^{1}\right]=0, \vec{\omega}<\vec{\omega}, D_{x}>Q^{1}=-Q^{1} \bullet \vec{\omega}<\vec{\omega}, D_{x}>}
\end{aligned}
$$

The angular equations were shown independently from this. There is however a nice way to link the radial and angular eg̣uations together, which has a meaning in complex analysis.
Indeed, we have that

$$
\begin{aligned}
& P^{1}\left(D_{x} f\right)=\left(\frac{\partial}{\partial r}-\frac{1}{r} \Gamma_{y}\right) Q^{1}(f)+\frac{m-1}{r} Q^{1}(f) \\
& =\vec{\omega}\left(\frac{\partial}{\partial r}+\frac{1}{r} \Gamma_{y}\right)\left(-\vec{\omega} 0^{1}(f)\right)=D_{y}\left(-\vec{\omega} Q^{1} \cdot(f)\right) .
\end{aligned}
$$

and

$$
-\vec{\omega} Q^{1}\left(D_{x} f\right)=D_{y} P^{1}(f)
$$

Furthermore, by the above commutation relations, $\vec{\omega} Q^{1}\left(D_{x} f\right)=-D_{x} \vec{\omega} Q^{1}(f)$, so that we arrive at the system

$$
\left(D_{x}+i D_{y}\right)\left[P^{1}(f)-i \vec{\omega} Q^{1}(f)\right]=0
$$

Hence spherical means of codimension 2 provide global solutions of the complex monogenic system $\left(D_{x}+i D_{y}\right) g=0$, which we already studied partially in [11] (see also [8], [12]). It is natural to introduce one single spherical mean of codimension 2 by means of

$$
M(f)(\vec{x}, \vec{y})=\frac{1}{\omega_{m-1}} \int_{S^{m-1}}(1+i \vec{u} \wedge \vec{\omega}) \delta(\langle\vec{u}, \vec{\omega}\rangle) f(\vec{x}+r \vec{u}) d S_{u}
$$

Then $M(f)$ is a solution of $\left(D_{x}+i D_{y}\right) g=0$ such that $\lim _{y \rightarrow 0} M(f)(x, y)=f(x)$.

Examp1e. Let us take the Dirac measure $\delta(\vec{x}+r \vec{u})$. Then in spherical
coordinates, putting $\vec{x}=|\vec{x}| \vec{\xi}$, we have that

$$
\delta(\vec{x}+r \vec{u})=\frac{1}{r^{m-1}} \delta(r-|\vec{x}|) \otimes \delta(\vec{u}+\vec{\xi}), \quad \vec{u}, \vec{\xi} \in S^{m-1}
$$

Hence the spherical mean of the Dirac measure is given by

$$
M(\delta)(\vec{x}, \vec{y})=\frac{1}{\omega_{m-1}} \frac{1-i \vec{\xi} \wedge \vec{\omega}}{|y|^{m-1}} \delta(|\vec{y}|-|\vec{x}|) \times \delta(\langle\vec{\xi}, \vec{\omega}\rangle), \vec{x}=|\vec{x}| \vec{\xi}, \quad \vec{y}=|\dot{\vec{y}}| \vec{\omega}
$$

Notice that $M(\delta)(\vec{x}, \vec{y})$ is concentrated on the isotronic snhere in C^{m}. One can easily show that $M(\delta)(\vec{x}, \vec{y})$ is a global distributional solution of $\left(D_{x}+i D_{y}\right) q=0$.

Next we introduce the $k-t h$ snherical means of codimension 2 , denoted by $P_{ \pm k}(f)(\vec{x}, \vec{y}),(\vec{x}, \vec{y}) \in \hat{\Omega}$.

To that end, we first introduce vector bundles over S^{m-1} as follows. For $\vec{\omega} \in S^{m-1}, M_{t, k}(\vec{\omega})$ are the right C_{m}-modules of inner and outer spherical monogenics of degree k on $S_{\omega}=\left\{\vec{u} \in S^{m-1}: \vec{u} \mathbf{L} \vec{\omega}\right\}$ and $p_{k, \omega}$ is the projection onto $M_{+, k}(\vec{\omega})$. Furthermore, we put $M_{k}(\vec{\omega})=M_{+, k}(\vec{\omega})+M_{-, k}(\vec{\omega})$ and $H_{k}(\vec{\omega})=M_{+, k}(\vec{\omega})+M_{-, k-1}(\vec{\omega})$ and denote by $\Pi_{k, \omega}$ and $S_{k, \omega}$ the corresnonding projection operators. Notice that $\Pi_{k, \omega}=P_{k, \omega}-\vec{v} P_{k, \omega} \vec{v}$, where \vec{v} is the unit normal vectorfield on S_{ω}.

Definition 1. The $k-t h$ inner and outer spherical means of codim 2 are given by

$$
\begin{aligned}
& P_{+, k}^{1} f(\vec{x}, r \vec{\omega})=P_{k, \omega}(f(\vec{x}+r \vec{u})) \\
& P_{-, k}^{1} f(\vec{x}, r \vec{\omega})=P_{k, \omega}(\vec{u} f(\vec{x}+r \vec{u})),
\end{aligned}
$$

and are considered as sections of $M_{+, k}(\vec{\omega})$ (for fixed \vec{x}).
Putting $\theta=\langle\vec{u}, \vec{v}\rangle$, we have that in terms of the Gegenbauer nolynomials,

$$
\begin{aligned}
& P_{+, k}(f)(\vec{x}, r \vec{\omega})(\vec{v}) \\
& =\frac{1}{\omega_{m-1}} \int_{S^{m-1}} \delta(<\vec{\omega}, \vec{u}>)\left(C_{k}^{\frac{m-1}{2}}(\theta)+\vec{v} \vec{u} C_{k-1}^{\frac{m-1}{2}}(\theta)\right) f(r \vec{u}+\vec{x}) d S_{u}
\end{aligned}
$$

and
$P_{-, k}^{1}(f)(x, r \vec{\omega})(\vec{v})$
$=\frac{1}{\omega_{m-1}} \cdot \int_{S^{m-1}} \delta(\langle\vec{\omega}, \vec{u}\rangle)\left[\vec{u} C_{k}^{\frac{m-1}{2}}(\theta)-\vec{v} C_{k-1}^{\frac{m-1}{2}}(\theta)\right] f(r \vec{u}+\vec{x}) d S_{x}$.
Of course $P_{ \pm, k}(f)(\vec{x}, r \vec{\omega}) \in M_{+}, k(\vec{\omega})$ on $1 y$ for $\vec{v} \perp \vec{\omega}$.
The radical Darboux equations are now of the form

$$
\begin{aligned}
& P_{+, k}^{1}\left(\left(D_{x}-\vec{\omega}<\vec{\omega}, D_{x}>\right) f\right)=\left(\frac{\partial}{\partial r}+\frac{k+m-2}{r}\right) P_{-, k}^{1}(f) \\
& P_{-, k}^{1}\left(\left(D_{x}-\vec{\omega}<\vec{\omega}, D_{x}>\right) f\right)=\left(-\frac{\partial}{\partial \hat{r}^{\prime}}+\frac{k}{r}\right) P_{+, k}^{1}(f) .
\end{aligned}
$$

The angular Darboux equations are not expressed nicely in terms of $\mathrm{P}_{ \pm, \mathrm{k}}^{1}$. In order to obtain them, we first write $\mathrm{P}_{ \pm, k}^{1}$ into the form

$$
\begin{aligned}
& P_{+, k}^{1}(f)=A_{+, k}(f)+\vec{v}_{-, k-i}(f) \\
& P_{-, k}^{1}(f)=A_{-, k}(f)-\vec{v}_{+, k-1}(f),
\end{aligned}
$$

where
$A_{+, k}(f)=\frac{1}{\omega_{m-1}} \int_{S^{m-1}} \delta(<\vec{\omega}, \vec{u}>) C_{k}^{\frac{m-1}{2}}(\theta) f(r \vec{u}+\vec{x}) d S_{n}, ~$ and $A_{-, k}(f)=A_{+, k}(\vec{u} f)$. Similar to Theorem 1 , we obtain that for $\langle\vec{\omega}, \vec{v}\rangle=0$,

$$
\begin{aligned}
& r \vec{\omega}<\vec{\omega}, D_{x}>A_{+}, k(f)=\left(1-\Gamma_{\omega}\right) A_{-, k}(f), \\
& r \vec{\omega}<\vec{\omega}, D_{x}>A_{-, k}(f)=\Gamma_{\omega} A_{+}, k(f) .
\end{aligned}
$$

Next we introduce

Definition 2. The k-th spherical harmonic means of f are given by

$$
\begin{aligned}
& S_{+, k}^{1}(f(\vec{x}+r \vec{u}))=A_{+, k}(f)-A_{+, k-2}(f), \\
& S_{-, k}^{1}(f(\vec{x}+r \vec{u}))=A_{-, k}(f)-A_{-, k-2}(f) .
\end{aligned}
$$

Notice that formally $S_{+, k}^{1}=P_{+, k}^{1}-\vec{v} P_{-k}^{1}$ and

$$
S_{-, k}^{1}(f)=S_{+, k}^{1}(\vec{u} f)=P_{-, k}^{1}(f)+\vec{v} P_{+, k}^{1}(f) .
$$

Next we prove the generalized Darboux system for the k-th soherical harmonic means.

Theorem 2. Let $\vec{y}=r \vec{\omega}, \vec{v} \in S^{m-1}$ such that $\langle\vec{v}, \vec{\omega}\rangle=0$ and let Γ_{ν} be the . spherical Dirac operator on S_{ω}. Then $S_{+, k}^{1}(f)$ and $S_{-, k}^{1}(f)$ satisfy the system

$$
\left(D_{x}+i D_{y}-\frac{i \vec{\omega} \Gamma_{v}}{r}\right)\left(S_{+, k}^{1}(f)-i \vec{\omega} S_{-, k}^{1}(f)\right)=0 .
$$

Proof. First notice that $S_{ \pm}^{1}, k(f)$ satisfy the same anqular Darboux system from Theorem 1. Next, the radial Darboux system for $P_{ \pm, k}$ leads to

$$
\begin{aligned}
& S_{+, k}^{1}\left(\left(D_{x}-\vec{\omega}<\vec{\omega}, D_{x}>\right) f\right)=\left(\frac{\partial}{\partial r}+\frac{m-2-\Gamma \nu}{r}\right) S_{-}^{1}, k(f), \\
& S_{-, k}^{1}\left(\left(D_{x}-\vec{\omega}<\vec{\omega}, D_{x}>\right) f\right)=-\left(\frac{\partial}{\partial r}+\frac{\Gamma_{\nu}}{r}\right) S_{+, k}^{1}(f) .
\end{aligned}
$$

Hence, by combining both systems, we obtain that for

$$
\begin{aligned}
& \langle\vec{v}, \vec{\omega}\rangle=0, \vec{y}=\vec{r} \vec{\omega}, \\
& S_{+, k}^{1}\left(D_{x} f\right)=D_{y}\left(-\vec{\omega} S_{-, k}^{1}(f)\right)-\frac{\Gamma v}{r} S_{-, k}^{1}(f), \\
& -\vec{\omega} S_{-, k}^{1}\left(D_{x} f\right)=D_{y} S_{+, k}^{1}(f)+\frac{\Gamma \cup \vec{\omega}}{r} S_{+, k}(f) .
\end{aligned}
$$

\cdot It is now clear that $S_{+, k}^{1}\left(D_{x} f\right)=D_{x} S_{+, k}^{1}(f)$ while straightforward compuleads to

$$
\begin{aligned}
& S_{-, k}^{1}\left(\left(D_{x}-\vec{\omega}<\vec{\omega}, D_{x}>\right) f\right) \\
& =-2 \frac{\Gamma v}{r} S_{+, k}^{1}(f)+\left(D_{x}-\vec{\omega}<\vec{\omega}, D_{x}>\right) S_{-, k}^{1}(f)
\end{aligned}
$$

Hence, as $S_{-, k}^{1}\left(\vec{\omega}<\vec{\omega}, D_{x}>f\right)=-\vec{\omega}<\vec{\omega}, D_{x}>S_{-, k}^{1}(f)$, we obtain that for $\langle\vec{v}, \vec{\omega}\rangle=0$,

$$
\begin{aligned}
& \quad D_{x} S_{+, k}^{1}(f)=D_{y}\left(-\vec{\omega} S_{-, k}^{1}(f)\right)-\frac{\Gamma_{\nu}}{r} S_{-, k}^{1}(f), \\
& D_{x}\left(\vec{\omega} S_{-, k}^{1}(f)\right)=D_{y}\left(S_{+, k}^{1}(f)\right)-\frac{\Gamma_{y} \vec{\omega}}{r} S_{+, k}^{1}(f),
\end{aligned}
$$

which may be simplified to the stated system.

Notice that the above equation should be considered as an equation for sections of the bundle $S_{k}(\omega)$, on which Γ_{ν} acts as a finite dimensional linear operator.
3. Extended representations of $\operatorname{Spin}(\mathrm{m})$

Let $R_{\mathrm{m}, \mathrm{s}}$ be the space of real s-vectors and let $\widetilde{R}_{\mathrm{m}, \mathrm{s}}$ be the cone of elements of the form $\vec{y}=\vec{y}_{1} \cdot \vec{y}_{2} \ldots \vec{y}_{1}$ with $\vec{y}_{1} \perp \ldots \vec{y}_{\text {S }}$. Notice that
$\widetilde{R}_{\mathrm{m}, \mathrm{s}} \backslash\{0\}=\widetilde{\mathrm{G}}_{\mathrm{m}, \mathrm{s}}(R) \mathrm{x} R_{+}, \widetilde{\mathrm{G}}_{\mathrm{m}, \mathrm{s}}(R)$ being the Grassmann manifold of oriented s-dimensional subspaces of R^{m}.
First of all we introduce extended representations H and L of $\operatorname{Spin}(m)$ as follows. Let $\Omega \subseteq R_{\mathrm{m}}, \mathrm{f}$ a function in Ω and $\mathrm{t} \in \operatorname{Spin}(\mathrm{m})$. Then we put $H(t) f(y)=f(\bar{t} y t), L(t) f(y)=t f(\bar{t} y t), y \in \Omega$.

Furthermore, $y \in R_{\mathrm{m}}$ may be written as

$$
y=[y]_{0}+[y]_{1}+\ldots+[y]_{m},[y]_{s} \in R_{m}, s, s=0, \ldots, m,
$$

and $\bar{t}[y]_{S} t=[\bar{t} y t]_{S}, t \in \operatorname{Spin}(m)$. Hence the representations H and L are well defined for functions in $\Omega \subseteq R_{\mathrm{m}, \mathrm{s}}$.

Furthermore, if y is of the form $y=\vec{y}_{1} \ldots \vec{y}_{\mathrm{s}} \in \tilde{R}_{\mathrm{m}}, \mathrm{s}$ then
 defined on $\widetilde{R}_{\mathrm{m}, \mathrm{s}}$.

The Casimir operator of H is of the form

$$
C(H)=\frac{1}{4} \sum_{i<j}\left(d H\left(e_{i j}\right)\right)^{2},
$$

where $d H\left(e_{i j}\right)$ are the infinitesimal representations of $e_{i j}$. Let $\Delta_{\mathrm{G}_{\mathrm{m}, \mathrm{s}}}$ be the Laplace-Beltrami operator on $\widetilde{\mathrm{G}}_{\mathrm{m}, \mathrm{s}}(R)$, then $\Delta \widetilde{\widetilde{G}}_{\mathrm{m}, \mathrm{s}}$ equals the restriction of $G(H)$ to $\widetilde{R}_{\mathrm{m}, \mathrm{s}}$.

The infinitesimal representations of $e_{i j}$ corresponding to L are given by $d L\left(e_{i j}\right)=d H\left(e_{j}\right)+e_{i j}$. Hence the Casimir operator of L is given by

$$
C(L)=C(H)+\Gamma-\frac{1}{4}\left(\frac{m}{2}\right),
$$

where $\Gamma=\frac{1}{2} \sum_{i<j} e_{i j} d H\left(e_{i j}\right)$.
Notice that $\Gamma^{2}=\left[\Gamma^{2}\right]_{0}+\left[\Gamma^{2}\right]_{2}+\left[\Gamma^{2}\right]_{4}$, where

$$
\left[\Gamma^{2}\right]_{0}=C(H),\left[\Gamma^{2}\right]_{i}=(m-2) \Gamma
$$

and

$$
\left[\Gamma^{2}\right]_{4}=\frac{1}{4} \sum_{i<j<k<1} e_{i j k 1}\left(d H\left(e_{i j}\right) d H\left(e_{k 1}\right)-d H\left(e_{i k}\right) d H\left(e_{j 1}\right)\right.
$$

$$
\left.+\mathrm{dH}\left(\mathrm{e}_{\mathrm{i} 1}\right) \mathrm{dH}\left(\mathrm{e}_{\mathrm{j}} \mathrm{k}\right)\right) .
$$

Next, consider the Clifford derivative on R_{m}, introduced by D. Hestenes and G. Sobczyk in [4] and given by $D=\sum_{A} e_{A} \frac{\partial}{\partial y_{A}}$. Then on R_{m} we have that

$$
\begin{aligned}
d H\left(e_{i j}\right) f(y) & =\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left(f\left(\left(1-\varepsilon e_{i j}\right) y\left(1+\varepsilon e_{i j}\right)\right)-f(y)\right) \\
& =<\left[y, e_{i j}\right], D>f=<e_{i j}, \bar{y} D+y \bar{D}>f,
\end{aligned}
$$

where $\langle y, u\rangle=[\bar{y} u]_{0}=[y \bar{u}]_{0,} u, y \in R_{m}$.

Hence on R_{m} we obtain that

$$
\Gamma=\frac{1}{2}[\bar{y} D+y \dot{\bar{D}}]_{2} .
$$

Furthermore, let $D_{m, s}$ be the s-vector derivative, given by $\sum_{|A|=s} e \frac{\partial}{\partial y_{A}}$, then the restrictions of Γ to $R_{\mathrm{m}, \mathrm{s}}$ and $\tilde{R}_{\mathrm{m}, \mathrm{s}}$ are both of the form

$$
\left.\Gamma\right|_{R_{\mathrm{m}, \mathrm{~s}}}=\frac{1}{2}\left[\overline{\mathrm{y}} \mathrm{D}_{\mathrm{m}, \mathrm{~s}}+\mathrm{y} \overline{\mathrm{D}}_{\mathrm{m}, \mathrm{~s}}{ }_{2},\right.
$$

and will be denoted by $\Gamma_{y, s}$.
Examples. (i) For $s=1$ we have that $\left[\Gamma_{y, s_{4}}^{2}\right]^{=0}$ so that $\Delta_{S}=\Gamma(m-2-\Gamma)$.
(ii) For $s=2$ we put $y=\sum_{k<1} y_{k 1} e_{k 1}$ and $y_{k 1}=-y_{1 k}$ and we have that

$$
d H\left(e_{i j}\right)=2 \sum_{k \neq i, j}^{\sum}\left(y_{k j} \frac{\partial}{\partial y_{k i}}-y_{k i} \frac{\partial}{\partial y_{k j}}\right) .
$$

Hence $\Gamma_{y, 2}$ is given by

$$
\Gamma_{y, 2}=\sum_{i<j} \sum_{k \neq i, j} e_{i j}\left(y_{k j} \frac{\partial}{\partial y_{k i}}-y_{k i} \frac{\partial}{\partial y_{k j}}\right) .
$$

Notice that in this case $\left[\Gamma_{y, 2}^{2}\right]_{4} \neq 0$, which makes $\Gamma_{y, 2}$ quite independent from $\Delta_{G_{m, 2}} \cdot \Gamma_{y, 2}$ is even not an elliptic operator.

4. Spherical means of higher codimension

 Let $\mathrm{s}<\mathrm{m}-1$ and $\Omega \subseteq R^{\text {mp }}$ open. Than by $\hat{\Omega}_{\mathrm{s}}$ we denote the set of all spheresof codimension $s+1$ inside Ω. We parametrise $\hat{\Omega}_{s}$ as follows.
Let $\vec{\omega}_{1}, \ldots \vec{\omega}_{s}$ be an orthonormal s-frame; then $\omega=\vec{\omega}_{1} \ldots \vec{\omega}_{s}$ represents the oriented s-space spanned by $\vec{\omega}_{1}, \ldots, \vec{\omega}_{\mathrm{s}}$. Hence $\omega \in \widetilde{\mathrm{G}}_{\mathrm{m}, \mathrm{s}}(R)=\widetilde{R}_{\mathrm{m}}, \mathrm{s}^{\mathrm{n}} \mathrm{S}^{2^{\mathrm{m}}-1}$. A sphere of codimension $s+1$ is determined by its center \vec{x}, its radius r and the s-vector ω which represents the axis.
Hence $\hat{\Omega}_{\mathrm{s}}=\{(\overrightarrow{\mathrm{x}}, \mathrm{r} \omega): \overrightarrow{\mathrm{x}}+\overrightarrow{\mathrm{y}} \in \Omega,|y|=\mathrm{r}, \vec{y} \perp \omega\}$.
The normal vectors to $\operatorname{span}\left\{\vec{\omega}_{1}, \ldots, \vec{\omega}_{\mathrm{s}}\right\}$ are given by the equations $\left\langle\vec{\omega}_{j}, \vec{u}\right\rangle=0, j=1, \ldots, s$, and the Dirac measure on the space $N(\omega)$ of normal vectors is given by

$$
\delta\left(\left\langle\vec{u}_{u}, \vec{\omega}_{1}\right\rangle\right) \ldots \delta\left(\left\langle\vec{u}_{u}, \vec{\omega}_{s}\right)=\delta(\langle\vec{u}, \omega\rangle) .\right.
$$

Definition 3. The 0 -th spherical means of $f \in C_{0}(\Omega)$ of codimension $s+1$ are given by

$$
\begin{aligned}
& P^{s}(f)(\vec{x}, r \omega)=\frac{1}{\omega_{m-s}} \int_{S^{m-1}} \prod_{j=1}^{s} \delta\left(\left\langle\vec{u}, \vec{\omega}_{j}>\right) f(\vec{x}+r \vec{u}) d S_{u},\right. \\
& Q^{s}(f)(\vec{x}, r \omega)=\frac{1}{\omega_{m-s}} \int_{S^{m-1}} \prod_{j=1}^{s} \delta\left(\left\langle\vec{u}, \vec{\omega}_{j}>\right) \vec{u} f(\vec{x}+r \vec{u}) d S_{u},\right.
\end{aligned}
$$

where $(\vec{x}, r \omega) \in \hat{\Omega}_{s}$.
Notice that, when s is odd,

$$
\vec{u} \omega+\omega \vec{u}=2 \sum_{j=1}^{s}(-1)^{j}<\vec{u}, \vec{\omega}_{j}>\hat{\omega}_{j}
$$

whereas for s even,

$$
\vec{u} \omega-\omega \vec{u}=2 \sum_{j=1}^{s}(-1)^{j}\left\langle\vec{u}^{\prime}, \vec{\omega}_{j}>\hat{\omega}_{j}\right.
$$

where $\hat{\omega}_{j}=\vec{\omega}_{1} \ldots \vec{\psi}_{j} \ldots \vec{\omega}_{s}$.
For s odd we put $-\left\langle\vec{u}, \omega>=\frac{1}{2}(\vec{u} \omega+\omega \vec{u})\right.$, whereas for s even, $-\langle\vec{u}, \omega\rangle=\frac{1}{2}(\vec{u} \omega-\omega \vec{u})$. Hence $\langle\vec{u}, \omega\rangle$ is an (s-1)-vector in the C1ifford algebra spanned by $\vec{\omega}_{1}, \ldots, \vec{\omega}_{s}$, which we denote by $A(\omega)$.
Hence $\langle\vec{u}, \omega\rangle$ behaves like an s-dimensional vector in $A(\omega)$. This justifies the notation $\delta(\langle\vec{u}, \omega>)$ for the Dirac measure on $N(\omega)$. We now have

Lemma 1. The Dirac operator may be decomposed as $D=D_{+}(w)+D_{-}(w)$ where

$$
D_{+}(\omega)=\frac{1}{2} \sum_{j=1}^{m} \bar{\omega}\left\{\omega, e_{j}\right\} \frac{\partial}{\partial x_{j}}, D_{-}(\omega)=\frac{1}{2} \sum_{j=1}^{m} \bar{\omega}\left[\omega, e_{j}\right] \frac{\partial}{\partial x_{j}} .
$$

Furthermore for s even (resp. s odd),

$$
D_{\mp}(\omega)=\sum_{j=1}^{s} \vec{\omega}_{j}\left\langle\vec{\omega}_{j}, D>\right.
$$

Hence we obtain the radial Darboux equations

Theorem 3. For s even (resp. s odd), we have that

$$
\begin{aligned}
& D_{ \pm}(\omega) P^{s}(f)=\left(\frac{\partial}{\partial r}+\frac{m-s+1}{r}\right) Q^{s}(f) \\
& D_{ \pm}(\omega) Q^{s}(f)=-\frac{\partial}{\partial r} P^{s}(f) .
\end{aligned}
$$

In order to establish the angular Darboux equations, we first study the action of the operator $\Gamma_{y, s}$, introduced in the previous section, section, on $\delta(\langle u, \omega\rangle)$.

Lemma 2. For s odd (resp. s even), we have that

$$
\Gamma_{y, s} \delta\left(\langle\overrightarrow{\mathrm{u}}, \omega>)=\overrightarrow{\mathrm{u}}_{\wedge} \mathrm{D}_{ \pm}(\omega) \delta(\langle\overrightarrow{\mathrm{u}}, \omega\rangle)\right.
$$

Proof. First consider any smooth function $f\left(\vec{y}_{1}, \ldots, \vec{y}_{s}\right)$, defined in a neighbourhood of the cone

$$
K=\left\{\left(\vec{y}_{1}, \ldots, \vec{y}_{s}\right) \in\left(R^{m} \backslash\{0\}\right): \vec{y}_{1} \perp \ldots \perp \vec{y}_{s}\right\},
$$

such that $f \mid K$ depends only on the s-vector $\vec{y}_{1} \ldots \overrightarrow{\mathrm{y}}_{\mathrm{S}}$. Then $f \mid K$ determines a function on $\widetilde{R}_{\mathrm{m}, \mathrm{s}}$, which we denote by $\mathrm{f} \mid \widetilde{R}_{\mathrm{m}, \mathrm{s}}$. Of course this is no restriction in the classical sense, since K is a bundle over $\widetilde{R}_{\mathrm{m}, \mathrm{s}}$ in which $\widetilde{R}_{\mathrm{m}, \mathrm{s}}$ is not inbedded as a classical surface. In any case, we may define a representation H^{\prime} of $\operatorname{Spin(m)}$ on f by $H^{\prime}(t) f\left(\vec{y}_{1}, \ldots, \vec{y}_{s}\right)=\underset{\sim}{f}\left(\vec{t}_{y_{1}} t, \ldots, \overrightarrow{t y}_{s} t\right)$ and $H^{\prime}(t) f\left(\vec{y}_{1}, \ldots, \vec{y}_{s}\right)$ may sti11 be"restricted" to $\widetilde{R}_{\mathrm{m}, \mathrm{s}}$.
Furthermore $\left.\left.\left(\mathrm{H}^{\prime}(\mathrm{t}) \mathrm{f}\right)\right|_{\tilde{R}_{\mathrm{m}, \mathrm{s}}} ^{\mathrm{f}}\right|_{\tilde{R}_{\mathrm{m}, \mathrm{s}}}\left(\overrightarrow{\mathrm{t}}_{\mathrm{y}}^{1} \ldots \overrightarrow{\mathrm{y}}_{\mathrm{s}} \overline{\mathrm{t}}\right)=\mathrm{H}(\mathrm{t})\left(\mathrm{f} \mid \tilde{R}_{\mathrm{m}, \mathrm{s}}\right)$,
so that also

$$
\mathrm{dH}\left(\mathrm{e}_{\mathrm{ij}}\right)\left(\mathrm{f} \mid \widetilde{R}_{\mathrm{m}, \mathrm{~s}}\right)=\left(\mathrm{dH} \mathrm{~d}^{\prime}\left(\mathrm{e}_{\mathrm{ij}}\right) \mathrm{f}\right) \mid \tilde{R}_{\mathrm{m}, \mathrm{~s}}
$$

$$
=-\left.2 \sum_{\mathrm{k}=1}^{\mathrm{s}}\left(\mathrm{~L}_{\mathrm{i} j}^{\mathrm{k}} \mathrm{f}\right)\right|_{\mathrm{P}} ^{\mathrm{m}, \mathrm{~s}},
$$

where $L_{i j}^{k}=y_{k i} \frac{\partial}{\partial y_{k j}}-y_{k j} \frac{\partial}{\partial y_{k i}}$. Hence we arrive at

$$
\Gamma_{y, s}\left(f \mid \widetilde{R}_{m, s}\right)=-\left(\sum_{i<j} e_{i j} \sum_{\mathrm{k}=1}^{\mathrm{s}} \mathrm{~L}_{\mathrm{ij}}^{\mathrm{k}} \mathrm{f}\right) \mid \tilde{R}_{\mathrm{m}, \mathrm{~s}}
$$

We now apply this to the function

$$
f\left(\vec{y}_{1}, \ldots, \vec{y}_{s}\right)=\left|\vec{y}_{1}\right| \ldots\left|\vec{y}_{s}\right| \delta\left(\left\langle\vec{u}_{\mathrm{u}}, \vec{y}_{1}\right\rangle\right) \ldots \delta\left(\left\langle\vec{u}_{\mathrm{u}}, \vec{y}_{s}>\right)\right.
$$

which, after action on a testfunction $\varphi(u)$ behaves like a C_{∞}-function. Notice that $f \mid \widetilde{R}_{m, s}=\delta(\langle\vec{u}, \omega\rangle)$. Hence, putting. $\vec{y}_{j}=\left|\vec{y}_{j}\right| \vec{\omega}_{j}$ and $\Gamma_{y k}=-\sum_{i<j} e_{i j} L_{i j}^{k}$, we arrive at

$$
\begin{aligned}
& \Gamma_{y, s} \delta(\langle\vec{u}, \omega\rangle)=\left|\vec{y}_{1}\right| \ldots\left|\vec{y}_{s}\right| \Gamma_{y, s}\left(\delta\left(\left\langle\vec{u}_{,}, \vec{y}_{1}\right\rangle\right) \ldots \delta\left(\left\langle\vec{u}_{,}, \vec{y}_{s}\right\rangle\right)\right) \\
& =\left(\vec { \mathrm { u } } _ { \wedge } \sum _ { \mathrm { k } = 1 } ^ { \mathrm { s } } \vec { \omega } _ { \mathrm { k } } \delta ^ { \prime } (\langle \vec { \mathrm { u } } , \vec { \omega } _ { \mathrm { k } } \rangle) \prod _ { j \neq \mathrm { k } } \delta \left(\left\langle{\left.\left.\left.\overrightarrow{\mathrm{u}}, \vec{\omega}_{\mathrm{j}}\right\rangle\right)\right) \mid \tilde{R}_{\mathrm{m}}, \mathrm{~s}} .\right.\right.\right.
\end{aligned}
$$

On the other hand, for $\left\langle\vec{\omega}_{h}, \vec{\omega}_{j}\right\rangle=\delta_{k j}$, i.e. on K,

$$
\sum_{k=1}^{s} \vec{\omega}_{k}\left\langle\vec{\omega}_{k}, D_{u}>\delta(\langle\vec{u}, \omega\rangle)=\sum_{k=1}^{s} \vec{w}_{k} \delta^{\prime}\left(\left\langle\overrightarrow{\mathrm{u}}_{\mathrm{u}}, \vec{\omega}_{\mathrm{k}}\right\rangle\right) \prod_{j \neq k} \delta\left(\left\langle\overrightarrow{\mathrm{u}}^{\prime}, \vec{\omega}_{j}\right\rangle\right)\right.
$$

which, in view of Lemma 1 , leads to the stated identity. This leads to the angular Darboux equations.

Theorem 4. For s odd (resp. s even), we have that.

$$
\begin{aligned}
& D_{ \pm}(\omega) P^{S}(f)=\frac{1}{r}\left(s-\Gamma_{y, s}\right) Q^{S}(f) \\
& D_{ \pm}(\omega) Q^{s}(f)=\frac{1}{r} \Gamma_{y, s} P^{s}(f)
\end{aligned}
$$

Proof. We have that $\overrightarrow{\mathrm{u}} \wedge \mathrm{D}_{ \pm}(\omega)=\sum_{\mathrm{k}=1}^{\mathrm{S}}\left\langle\vec{\omega}_{\mathrm{k}}, \mathrm{D}_{\mathrm{u}}>\overrightarrow{\mathrm{u}} \wedge \vec{\omega}_{\mathrm{k}}=0\right.$, so that, in view of Lemma 2,

$$
\begin{aligned}
& \Gamma_{y, s} P^{s}(f)(\vec{x}, r \omega) \\
& =\frac{1}{\omega_{m-s}} \int_{S^{m-1}} \vec{u} \wedge\left(D_{ \pm}(\omega) \delta(\langle\vec{u}, \omega>)) f(\vec{x}+r \vec{u}) d S_{u}\right. \\
& =-\frac{1}{\omega_{m}-s} \int_{S^{m-1}} \delta(<\vec{u}, \omega>) \vec{u} \wedge\left(r_{k=1}^{s} \sum_{k} \vec{\omega}_{k}<\vec{\omega}_{k}, D_{x}>\right) f(\vec{x}+r \vec{u}) d S_{u} \\
& =r D_{ \pm}(\omega) Q^{s}(f)(\vec{x}, r \omega)
\end{aligned}
$$

$$
\begin{aligned}
& \text { since for } \vec{u} \perp \vec{w}_{k}, \vec{u}_{\wedge} \vec{\omega}_{k}=-\vec{w}_{k} \wedge \vec{u}=-\vec{\omega}_{k} \vec{u} \text {. } \\
& \text { Similarly, as } \mathrm{D}_{ \pm}(\omega) \overrightarrow{\mathrm{u}}=\sum_{\mathrm{k}=1}^{\mathrm{s}} \vec{\omega}_{\mathrm{k}}\left\langle\vec{\omega}_{\mathrm{k}}, \mathrm{P}_{\mathrm{u}}^{\prime}>\overrightarrow{\mathrm{u}}=-\mathrm{s}\right. \text {, } \\
& \begin{aligned}
\Gamma_{y, s} Q^{s} & (f)(\vec{x}, r \omega) \\
& =-\frac{1}{\omega_{m-s}} \int_{S^{m-1}} \delta(\langle\vec{u}, \omega\rangle) \vec{u} \wedge D_{ \pm}(\omega)(\vec{u} f(x+r \vec{u})) d S_{u} \\
& =s Q^{s}(f)-r D_{ \pm}(\omega) P^{s}(f) .
\end{aligned}
\end{aligned}
$$

Notice that for s odd (resp. s even), $D_{-}(\omega)$ commutes with both p^{s} and Q^{s}, while $D_{ \pm}(\omega)$ commutes with P^{s} and $^{+}$anticommutes with \cap^{s}. Hence Theorems 3 and 4 lead to the system

$$
\begin{aligned}
& P^{s}\left(D_{x} f\right)=\left(\frac{\partial}{\partial r}-\frac{1}{r} \quad \Gamma_{y, s}\right) Q^{s}(f)+\frac{m-1}{r} Q^{s}(f), \\
& Q^{S}\left(D_{x} f\right)=-\left(\frac{\partial}{\partial r}+\frac{1}{r} \Gamma_{y, s}\right) P^{s}(f) \ldots
\end{aligned}
$$

Furthermore, for s even $D_{+}(\omega)$ anticommutes with ω, while for s odd. D_(ω) commutes with ω. This means that for s even (resn. s odd) D_{x} commutes (resp. anticommutes) with $?^{s}$. Hence the second Darboux equations may be written as

$$
D_{x} \omega Q^{S}(f)=(-1)^{s+1} \omega\left(\frac{\partial}{\partial r}+\frac{1}{r} \Gamma_{y, s}\right) P^{s}(f)
$$

Next, put $y=r \omega$. Then we shall establish an expression for $\Gamma_{y, s}(y f(y))$ in terms of $y \Gamma_{y, s}(f(y))$ and $y f(y)$. This corresponds to the hypercomplex refinement of the Kelvin inversion, given by $\Gamma(\vec{y} f(\vec{y}))=-\vec{y} \Gamma_{y^{\prime}} f(\vec{y})+m \vec{y} f(\vec{y})$, so that the map $f(\vec{y}) \rightarrow \frac{\vec{y}}{|\vec{y}|^{m}} f\left(\frac{\vec{y}}{|\vec{y}|^{2}}\right)$ pre-
serves monogenicity and changes inner spherical monogenics into outer spherical monogenics and vice versa (see [7], [9] , [13]). First we prove

Lemma 3. Let $\omega=\vec{\omega}_{1} \ldots \vec{\omega}_{s} \in \widetilde{\widetilde{T}}_{\mathrm{m}, \mathrm{s}}(R)$ and 1 et $\left(\overrightarrow{\mathrm{u}}_{1}, \ldots, \overrightarrow{\mathrm{u}}_{\mathrm{m}-\mathrm{s}}\right)$ be a local orthonormal frame, orthogonal to ω. Then $\Gamma_{y, s}$ is locally given by

$$
\Gamma_{y, s}=r_{j, k}(-1){ }^{k_{\vec{\omega}_{k}}} \vec{u}_{j}<\vec{u}_{j} \hat{\omega}_{k}, D_{m, s}>
$$

where $r \omega=y$ and $\hat{\omega}_{k}=\vec{\omega}_{1} \ldots \vec{\omega}_{k-1} \vec{\omega}_{k+1} \ldots \vec{\omega}_{s}$.

Proof. Let us recall that $\Gamma_{y, s}$ is given by

$$
\Gamma_{y, s}=\frac{1}{2}\left[\bar{y} D_{m, s}+y \bar{D}_{m, s}\right]_{2}
$$

Next, consider local orthonormal frames $\left(\vec{\omega}_{1}, \ldots, \vec{\omega}_{s}\right)$ and ($\vec{u}_{1}, \ldots, \vec{u}_{m-s}$) such that $\vec{\omega}=\vec{\omega}_{1} \ldots \vec{\omega}_{s}$ and ($\vec{u}_{1}, \ldots, \vec{u}_{m-s}$) is orthogonal to ω. Then it is easy to see that

$$
D_{m, s}=\omega<\omega, D_{m, s}>+\sum_{j, k} \vec{u}_{j} \hat{\omega}_{k}<\vec{u}_{j} \hat{\omega}_{k}, D_{m, s}>+L_{m, s},
$$

where $L_{m, s}$ is normal to $\widetilde{R}_{m, s}$. Hence, as $y=r \omega$ and $\bar{y}=r \bar{\omega}$, we obtain that

$$
\begin{aligned}
& {\left[\bar{y} D_{m, s}\right]_{2}=r \sum_{j, k}^{\sum\left[\vec{\omega}_{j} \hat{\omega}_{k}\right]_{2}<\vec{u}_{j} \hat{\omega}_{k}, D_{m, s}>}} \\
& {\left[y \bar{D}_{m, s}\right]_{2}=\sum_{j, k}^{\sum\left[\vec{\omega}_{j} \hat{\omega}_{k}\right]_{2}<\vec{u}_{j} \hat{\omega}_{k}, D_{m, s}>}}
\end{aligned}
$$

since $\left[\bar{\omega} \mathrm{L}_{\mathrm{m}, \mathrm{s}}\right]_{2}=\left[\omega \overline{\mathrm{L}}_{\mathrm{m}, \mathrm{s}}\right]_{2}=0$.
Now $\vec{u}_{j} \hat{\omega}_{k}=(-1)^{s-1} \hat{\omega}_{k} \vec{u}_{j}$ and $\bar{\omega}=(-1)^{s-k} \overline{\vec{\omega}}_{k} \overline{\hat{\omega}}_{k}$, so that $\vec{\omega}_{j} \hat{\omega}_{k}=(-1)^{k} \vec{\omega}_{k} \vec{u}_{j}$.
On the other hand, $\omega=(-1)^{k-1} \vec{\omega}_{k} \hat{\omega}_{k}$ so that $\overline{\omega \vec{u}}_{j} \hat{\omega}_{k}=(-1)^{k-1} \vec{\omega}_{k} \overline{\vec{u}}_{j}$ $=(-1) \vec{\omega}_{k} \overrightarrow{\mathrm{u}}_{\mathrm{j}}$. This leads to the stated lemma.

Theorem 5. Let $\mathrm{f}(\mathrm{y})$ be a function on $\widetilde{R}_{\mathrm{m}, \mathrm{s}}$. Then we have that

$$
\Gamma_{y, s} s^{y f(y)=-y \Gamma} y, s f(y)+s(m-s) y f(y) .
$$

Proof. Putting $y=\sum_{A} y_{A} e_{A}$, we have that

$$
\Gamma_{y, s} y f(y)=\sum_{A \mid=s}^{y_{A} \Gamma_{y}, s e_{A} f(y)+\Gamma_{y, s}(y) f(y) .}
$$

For s odd, ω commutes with $\vec{\omega}_{k}$ and anticommutes with \vec{u}_{j}, whereas for s even, ω commutes with $\overrightarrow{\mathrm{u}}_{\mathrm{j}}$ and anticommutes with $\vec{\omega}_{\mathrm{k}}$. Hence we obtain that

$$
\begin{aligned}
\left|\sum_{A}\right| & =s y_{A}^{\Gamma} y, s e_{A} f(y)=r \sum_{j, k}(-1) k \vec{\omega}_{k} \vec{u}_{j}(r \omega)<\vec{u}_{j} \hat{\omega}_{k}, D_{m}, s>f(y) \\
& =-y_{y, s}^{\Gamma} f(y) .
\end{aligned}
$$

Furthermore we have that

$$
\begin{aligned}
& \Gamma_{y, s} y=r \sum_{j, k}(-1)^{k_{w_{w}}} \vec{u}_{j} \sum_{A \mid=s}\left\langle\vec{u}_{j} \hat{\omega}_{k}, e_{A}>e_{A}\right. \\
& =r \sum_{j, k}^{\sum} \omega=s(m-s) y .
\end{aligned}
$$

In order to establish the complete system of Darboux equations, we
introduce a new differential operator.
Definition 4. The operator D_{y} on $\widetilde{R}_{\mathrm{m}, \mathrm{s}}$ is given by $D_{y}=\omega\left(\frac{\partial}{\partial r}+\frac{1}{\mathrm{r}} \Gamma_{\mathrm{y}}, \mathrm{s}\right)$. Proposition 1. Let $\vec{\omega}_{1} \ldots \vec{\omega}_{s}=\omega$ and let $\left(\vec{u}_{1}, \ldots, \vec{u}_{m-\varsigma}\right)$ be an orthonormal basis, orthogonal to ω. Then we have that

$$
D_{y}=\omega<\omega, D_{m, s}>+\sum_{j, k} \vec{u}_{j} \hat{\omega}_{k}<\vec{u}_{j} \hat{\omega}_{k}, D_{m, s}>,
$$

or, in other words, D_{y} is the projection of $D_{m, s}$, tangent to $\widetilde{R}_{m, s}$.
Proof. This follows easily from the fact that

$$
\frac{\partial}{\partial r}=<\omega, D_{m, s}>\text { and }(-1)^{k} \omega \vec{\omega}_{k} \vec{u}_{j}=(-1)^{\mathrm{k}} \overrightarrow{\mathrm{u}}_{j} \vec{\omega}_{k} \omega=\overrightarrow{\mathrm{u}}_{j} \hat{\omega}_{k}
$$

and the fact that an orthonormal basis for the tangent space of $\widetilde{R}_{\mathrm{m}, \mathrm{s}}$ in $R_{\mathrm{m}, \mathrm{s}}$ is given by $\left\{\omega, \overrightarrow{\mathrm{u}}_{\mathrm{j}} \hat{\omega}_{\mathrm{k}}: \mathrm{j}, \mathrm{k}\right\}$.

Notice that if f is a C_{1}-function in a neighbourhood Ω of a point of $\tilde{R}_{\mathrm{m}, \mathrm{s}}$ such that in $\Omega \tilde{R}_{R_{\mathrm{m}}, \mathrm{s}}$ all normal derivations to $\tilde{R}_{\mathrm{m}, \mathrm{s}}$ of f vanish, then $D_{y}\left(f \mid \widetilde{R}_{\mathrm{m}, \mathrm{s}}\right)=\left(\mathrm{D}_{\mathrm{m}, \mathrm{k}} \mathrm{f}\right) \mid \tilde{R}_{\mathrm{m}, \mathrm{s}}$. We now have the Darboux system.

Theorem 5. The spherical means of codim $s+1$ satisfy the system

$$
\begin{gathered}
D_{x} P^{s}(f)=(-1)^{\frac{s(s+1)}{2}}\left(D_{y}+\frac{(s-1)(s+1-m) \omega}{r}\right) \omega Q^{s}(f), \\
D_{x} \omega Q^{s}(f)=(-1)^{s+1} D_{y} P^{s}(f) . \\
\text { Proof. As } \omega^{2}=(-1)^{\frac{s(s+1)}{2}} \text {, we have that }
\end{gathered}
$$

$$
\begin{aligned}
& \left(\frac{\partial}{\partial r}-\frac{1}{r} \Gamma_{y, s}\right) Q^{s}(f) \\
& =(-1) \frac{\frac{s(s+1)}{2}\left(\frac{\partial}{\partial r}-\frac{1}{r} \Gamma_{y, s}\right) \omega \cdot \omega Q^{s}(f)}{} \\
& =(-1) \frac{s(s+1)}{2}\left[D_{y} \omega ?^{s}(f)-\frac{s(m-s)}{r} \omega^{2} Q^{s}(f)\right]
\end{aligned}
$$

while clearly

$$
D_{x} \omega Q^{s}(f)=(-1)^{s+1} D_{y} P^{s}(f)
$$

General spherical means of codimension $s+1$ are introduced as follows. First, denote for $\omega \in \widetilde{G}_{\mathrm{m}}, \mathrm{s}(R), M_{ \pm, \mathrm{k}}(\omega)$ the right-module of inner (outer)
spherical monogenics of degree k on $S_{\omega}=\left\{\vec{u} \in S^{m-1} ;\langle\vec{u}, \omega\rangle=0\right\}$. Let $P_{k, \omega}$ be the projection on $M_{+, k}^{\prime}(\omega)$ and put

$$
M_{k}(\omega)=M_{+, k}(\omega)+M_{-, k}(\omega), H_{k}(\omega)=M_{+, k}(\omega)+M_{-, k-1}(\omega) ;
$$

then the projections on $M_{k}(\omega)$ and $S_{k}(\omega)$ are denoted by $\Pi_{k, \omega}$ and $S_{k, \omega}$.

Definition 5. Let f be a continuous function in $\Omega \subseteq R^{m}$. Then the k-th inner and outer spherical means of codim $s+1$ of f are defined by

$$
\begin{aligned}
& P_{+, k}^{s} f(\vec{x}, r \omega)=P_{k, \omega}(f(\vec{x}+r \vec{u})), \\
& P_{-, k}^{s} f(\vec{x}, r \omega)=P_{k, \omega}(\vec{u} f(\vec{x}+r \underline{u})),
\end{aligned}
$$

and are considered as sections of $M_{+, k}(\omega)$ such that $(\vec{x}, r \omega) \in \hat{\Omega}_{s}$. Notice that, if \vec{v} is the unit normal on $S_{\omega}, \theta=\langle\vec{u}, \vec{v}\rangle$, then P_{+}^{S}, k is given by

$$
\begin{aligned}
& P_{+, k}^{s}(f)(\vec{x}, r \omega)(\vec{v}) \\
& =\frac{1}{\omega_{m-s}} \int_{S^{m-1}} \prod_{1}^{s} \delta\left(<\vec{u}, \vec{\omega}_{j}>\right)\left(C_{k}^{\frac{m-s}{2}}(\theta)+\vec{v} \vec{u}_{C_{k-1}}^{\frac{m-s}{2}}(\theta)\right) f(\vec{r}+\vec{x}) d S_{u}
\end{aligned}
$$

Furthermore, the radial Darboux equations are given by (s being even and odd respectively)

$$
\begin{aligned}
& P_{+, k}^{s}\left(D_{ \pm}(\omega) f\right)=\left(\frac{\partial}{\partial r}+\frac{k+m-s-1}{r}\right) P_{-, k}^{s}(f), \\
& P_{-, k}^{s}\left(D_{ \pm}(\omega) f\right)=\left(-\frac{\partial}{\partial r}+\frac{k}{r}\right) P_{+, k}^{s}(f) .
\end{aligned}
$$

The construction of angular Darboux equations is similar to the one in section 2 and uses the operator $\Gamma_{y, s}$. To that end, let

$$
S_{+, k}^{S}(f)=P_{+, k}^{s}(f)-\vec{v}_{-, k-1}^{s}(f), S_{-, k}^{s}(f)=P_{-, k}^{s}(f)+\vec{v}_{+, k-1}^{S}(f)
$$

We then obtain

Proposition 2. For s even (resp. s odd), $S_{+, k}^{S}$ and $S_{-, k}^{S}$ satisfy the angular Darboux system

$$
\begin{aligned}
& D_{F}(\omega) S_{+, k}^{s}(f)=\frac{1}{r}\left(s-\Gamma_{y, s}\right) S_{-, k}^{s}(f), \\
& D_{F}(\omega) S_{-, k}^{s}(f)=\frac{1}{r} \Gamma_{y, s} S_{+, k}^{s}(f) .
\end{aligned}
$$

This finally leads to the complete Darboux system.
Theorem 7. The k-th spherical harmonic means of codimension $s+1$ satisfy the system

$$
\begin{aligned}
& D_{x} S_{+, k}^{s}(f)=(-1)^{\frac{s(s+1)}{2}}\left(D_{y}+\frac{(s-1)(s+1-m) \omega}{r}-\frac{\left.\omega \Gamma_{v}\right)}{r}\right) \omega S_{-, k}^{s}(f), \\
& D_{x} \omega S_{-, k}^{s}(f)=(-1)^{s+1}\left(D_{y}-\frac{\omega \Gamma_{y}}{\mathbf{S}}\right) \mathrm{S}_{+, k}^{s}(f) .
\end{aligned}
$$

Proof. The radial and angular Darboux equations already lead to the system

$$
\begin{aligned}
& S_{+, k}^{s}\left(D_{x} f\right)=\left(\frac{\partial}{\partial r}-\frac{1}{r} r_{y, s}+\frac{(m-1}{r}-\frac{r^{v}}{r}\right) S_{-, k}^{s}(f), \\
& S_{-, k}^{s}\left(D_{x} f\right)=-\left(\frac{\partial}{\partial r}+\frac{1}{r} r_{y, s}+\frac{1}{r} r_{v}\right) S_{+, k}^{s}(f) .
\end{aligned}
$$

The rest follows easily from the fact that D_{x} commutes with $S_{+, k}^{s}$ while

$$
\begin{aligned}
& S_{-, k}^{S}\left(D_{F}(w) f\right)=-D_{F}(w) S_{-, k}^{S}(f), \\
& S_{-, k}^{S}\left(D_{ \pm}(w) f\right)=D_{ \pm}(w) S_{-, k}^{s}(f)-\frac{2 \Gamma_{v}}{r} S_{+, k}^{S}(f),
\end{aligned}
$$

so that

$$
\omega S_{+, k}^{S}\left(D_{x} f\right)=(-1)^{S} D_{x} \omega S_{-, k}^{S}(f)-2 \frac{\omega \Gamma v}{r} S_{+, k}^{S}(f)
$$

References

[1] V. Avanissian, Sur les fonctions harmoniques d'ordre quelconque et leur prolongement analytique dans c^{n}, Lecture Notes in Math. 919 (1981) 192-281.
[2$]$ F. Brackx, R. Delanghe, F. Sommen, C1ifford Analysis, Research Notes in Math. , 76 (Pitman, London, 1982).
[3] S. Helgason, Groups and Geometric Analysis, Pure and Applied Math. (Acad. Press, Orlando, London, 1984).
[4] D. Hestenes, G. Sobczyk, Clifford algebra to Geometric Calculus, Reidel Pub1. Co. (Reidel, Dordrecht, Boston, 1984).
[5] H. Hochstadt, The functions of mathematical physics, Pure and Applied Math., 23 (Wiley, Interscience, New York, 1971).
[6] F. John, Plane Waves and Spherical Means, (Springer Verlag, 1955).
[7] P. Lounesto, Spinor valued regular functions in hypercomplex analysis, (Thesis, Helsinki, 1979).
[8] J. Ryan, Complexified Clifford Analysis, Complex Variables : Theory and App1. 1 (1982), 119-149.
[9] F. Sommen, Spherical Monogenic Functions and Analytic Functionals on the Unit Sphere, Tokyo J. Math. 4 (1981), 427-456.
[10] , Spingroups and Spherical Means, to appear in Proceedings of Workshop on Clifford Algebras, Canterbury, 1985.
[11] , Martinelli-Bochner formulae in complex.Clifford analysis, to appear in Zeit.Anal. Anw.
[12] V. Souček, Complex quaternionic analysis applied to spin- $\frac{1}{2}$ massless fields, complex variables : Theory and Appl. 1 (1983), 327-346.
[13] A. Sudbery, Quaternionic Analysis, Math. Proc. Cambridge Phil. Soc. 85 (1979), 199-225.

State University of Ghent
Seminar of Algebra and Functional analysis
Galglaan 2
B-9000 Gent, Be1gium.

