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1. Introduction 

Investigation of stochastic process is closely related to probability measures 
defined on their sample paths. Therefore, Borel probability measures considered 
on a special topological space of functions are of great interest for such purpose. 
Especially, topological spaces of discontinuous functions are needful. 

Original idea of a topological set of discontinuous functions on the interval <0, 1> 
was introduced by Skorohod (1956). He studied five different distances in his paper. 
One of them has an equivalent one giving a Polish space; see Billingsley (1968). 
The notion of Skorohod space was generalized by Straf (1969) and Neuhaus (1971) 
for a set of discontinuous functions on a rectangle <0, 1>*. Let us denote these spaces 
by Dk(0,1). The space Di(0, 1) coincides with the original definition on the interval 
<0, 1>. A larger space equipped with the same distance as Dk(0, 1) was introduced 
by Straf (1970). 

Skorohod spaces are very useful namely for a study of weak convergence of 
stochastic processes. There are convergence criteria for D±(0, 1), survey of which 
is in Billingsley (1968). Moreover, there is a criterion derived by Bickel and Wichura 
(1971) for Dk(0, 1). An improvement of that one is given by Lachout (1988). 

This paper aims at showing a possibility how to define a metric space of disconti
nuous function on a general subset of Rk. Unfortunately, completeness need not 
take place necessarily. 

2. Skorohod spaces 

This chapter gives a general view of a Skorohod space. A basic space is defined 
and the others are developed from it by aid of an embedding. Let us denote the set 
of all real numbers by R and its two-point compactification by R*. For the sake 
of a special type of continuity, the following quadrants are important. 

*) Institute of Information Theory and Automation, Czechoslovak Academy of Sciences, 
182 08 Prague 8, Pod Vodárenskou věží 4, Czechoslovakia. 
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If t e (R*)k and if, for i = 1,..., k, St is one of the relations < and = , let 

Qs1...sfc(0 = { 5 e ^ l 5 / 5 ^ J i - l , . . . * } . 

A Polish space of discontinuous functions on Rk is a basic space in our considera

tions. 

Definition 1. Let us denote by D(Rk) a set of all functions f: Rk -+ R keeping 

the following properties: 

(1) For every t e (R*)k and an arbitrarily chosen quadrant, 

lim f(s) exists . 
s->t 

*5Qsi...sfc<0 
(2) For every t e Rk, 

lim f(s) = f(t) takes place . 
s-+t 

s e Q ^ , ^ , . . . , ^ ( 0 

Define a distance dk of two functions f, g e D(Rk) as follows 

(3) 
dk(f,g) = mini e> 0 , \ arctan tt — arctan st J 

for every t, s e Rk and some X e Ak 

< є 

where A is a set of all infective increasing maps from R to R, i.e. lim <p(x) = — co, 
lim <p(x) = +00 whenever <p e A. *->-oo 

JC-> + 00 

Theorem 1. The space D(Rk) equipped with the distance dk is a Polish space. 

Proof: Every f e D(Rk) can be extended to (R*)k by the following procedure. 
For t e (R*)k 

f(t) = lim f(s), where either St is = if tt < + co 

W ^ O o r S ' is < if ^ - = + 0 0 . 

Define 0 : D(Rk) -> D^O, 1) such that 

*/(') = / ( t a n (nti ~ ^) ' " " t a n (ntk " " ) ) 

for arbitrarily chosen t e <0, l>\fe D(Kfc) where the convention tan ( — n\2) = — co, 
tan(7r/2) = +co is used. $ is a homeomorphism between D(Rk) and Dk(0,l). 
Therefore, D(Rk) is a Polish space since D*(0, 1) is a Polish space; see Straf (1969), 
Neuhaus (1971). Q.E.D 

Remark that the function arctan used in the definition of the distance dh may be 
replaced by an arbitrary increasing bounded continuous map from R to R without 
any loss of topological structure. 

Definition 2. For a nonempty subset V of Rk, let us denote by D(V) the set of all 
functions f : V-> R which are restrictions of functions g e D(Rk) to the set V. 
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The set D(V) is a natural candidate for a generalized Skorohod space. But to 
carry over the distance meets some difficulties. 

Definition 3. Let us call D(V) a Skorohod space with an embedding \J/ if 

(4) D(V) ̂ J D(Rk) is a 1 -1 map such that W/V = f for every f e D(V) . 

Definition 3 gives a natural generalization of the notion of the Skorohod space. 

Theorem 2. If D(V) is a Skorohod space with an embedding \\t then the space 
D(V) equipped with a distance d9 

d(f,g) = dk(W,*l,g), 
is a separable metric space. 

Proof: The space \j/(D(V)) equipped with the distance dh must be a separable 
metric space. The topological spaces \j/(D(V)) equipped with the distance dk and 
D(V) equipped with the distance d are homeomorphic. Therefore D(V) equipped 
with d is a separable metric space. Q.E.D. 

The space can be incomplete as the following example shows. 

Example: Consider D(<0, 1>) with embedding 

/ /(0) t<0 

</f(0 = (/(') o g ^ i 
\ / ( i ) ' > i 

and the sequence of functions 

f(t)=/1 0 < t < l / « 

It is a Cauchy sequence since \j/fn -> h where 

W v / l t < 0 

* « - \ o <>o. 
But \j/ (h/<0, 1>) = 0 =£ h and thus the sequence off, cannot converge. 

In the sequel finite unions of open rectangles are considered. The special kind of 
sets gives a possibility to obtain Polish spaces. That is because a very natural mapping 
can be employed. 

Definition 4. For a subset T of Rk we denote by \j/ the mapping $ : D(T) -• R(Rk\ 

I lim f(s) if * G C 1 O ( Q = >(t)nT-{t}) 

^ ( o = ( S 6 Q = , : : = (onT 
\0 otherwise, 

where clo (A) denotes a closure of the set A. 

Lemma 1. y) fulfils (4) for every finite union of open rectangles T = Uy=i x ?=i 

(aU> bij)' 
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Proof: 

i) We show \jtfJT = f. 

If t e Tthen there exists an open set G such that t e G a T. Hence 

$f(t) = lim = f(t) for each fe D(T) . 
s-*f 

5eQ=,...,= (r)nr 

ii) Let us show \j/ : D(T) -> D(Rk). 
a) If teRk - clo (T) then there exists an open set G, t e G a Rk - clo (T). 

Hence $/(s) = 0 for each se G and \j/f is continuous at the point t. 

b) If t e T then there exists an open set G, t e G a T. Hence the point t fulfils 
( l ) a n d ( 2 ) s i n c e / e D ( T ) . 

c) Let t e dT and g = =(f) n T = 0. Then 

$f(i) = lim 0/(s) = 0 . 
s-+t 

s e Q=, . . . , = ( f ) 

d) Let t e dTand Q= =(f) n T + 0 . Since Tis a finite union of open rectangles 
there exists an open set G, teG such that 

6=,...,=(0 n cl° W n G = Q = ,...,=(0 n G • 
Hence 

#/(*)= lim / ( s ) = lim /(s) = 
s-+f s-+t 

seQ=,..., = ( ' ) n T seQ>,..., = (O^GnT 

lim #/(s) = lim $/(s) . 
s-*t s-+t 

seQ= = (OnG S 6 Q = , . . . , = (') 

e) Let f e d T a n d QSl Sk(t) n T = 0, at least one of St is equal to < . Hence 

lim #/(s) = 0 since 2Sl,...,sk(0 <= Kk - clo T . 
s->t 

S 6 Qsi , . . . ,Sk ( t ) 

f) Let f e d T a n d Qs1,...,sk(0 n T=# 0, at least one St is < . Hence there exists 
an open set G, teG such that 

QSl sk(0 n G = e s t . . . . ^ ) n G n clo T 

since Tis a finite union of open rectangles. 

Therefore 

lim $/(s) = lim $/(s) = lim f(s) 
s-*t s-*t s-*t 

seQslt...,sk^
 seQsu...,skW

nG S6Qsi,....sk(Or.T 
exists s ince /e D(T). Q.E.D. 

Theorem 3. Skorohod space D(T) with embedding \j) is a Polish space for each 
finite union of open rectangles T = Uj=i x i=i (aij> ^o)* 
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Proof: It is enough to prove a completeness because Lemma 1 and Theorem 2 
guarantee that D(T) is a separable metric space. 

Letf, e D(T) be a Cauchy sequence. Hence $fn is a Cauchy sequence and \j/fn -» ft 
since D(Rk) is a Polish space. 

Completeness of D(T) will be proved if $(hJT) = ft. For that goal it is enough to 
show that h(t) = 0 for each t e Rk - clo T. Let t e Rk - clo T. Then there exists 
an open ball G, t e G c Rk — clo T. Hence ^fn(s) = 0 for every seG and $fB -> h. 
Therefore h(f) = 0 as well. Q.E.D. 

The introduced spaces give a generalization of Dk(0, 1) in the following sense. 

Theorem 4. The bijection Q : Dk(0, 1) -* D((0, l)k) :fi->f/(0, l)fe is continuous. 
But o"1 is not continuous. 

Proof: Evidently, £ is bijection since f belonging to Dk(0, 1) is determined by its 
values on (0, l)k. 
a) Consider a sequence of the functions 

\ 1 otherwise 

These functions belong to Dk(0, 1) and have not limit there. But Qgn-+ h = 1 
in D((0, i)k) equipped by \j). Thus Q'1 is not continuous. 

b) Let us prove the continuity of Q. 
Letf, e Dk(0, 1) andf, ->f in Dk(0, 1). Let £ > 0 be arbitrarily chosen but fixed 
in the sequel. 
Then there exists n0eN such that for every n ̂  n0 we have ^nGyl0 l5 where 
A0l is the set of all continuous increasing maps of <0, 1> into itself i.e. A(0) = 0 
and X(l) = 1 for each X e Aoi, fulfiling 

\fn o Xn(t) - f(t)\ = 8 for each t e <0, l>fc 

and 
lnAftW.(-)\i ^ e for each 0 = s < t ^ 1 , i = 1, ..., k . 

Define maps <pn of Rk into itself by the following prescription 

m = (m I 0 " ' - 1 r̂ each l-l,...,*. ^ l W \ t otherwise 

Certainly, <pn belongs to Ak and \$Qfn o .An(r) — $of(f)| ^ £ for each t e Rk. It remains 
to prove that the other part of (3) is small as well. 

Evidently we have for every i = 1, . . . , k 

L /arctan (p%t) - arctan<?;(s)N 

s<t \ \ arctan t — arctan s , 

sup ln í -
0^s<í^l I \ 

. í arctan Xn(t) — arctan Xn(s)У 

arctan t — arctan s 

95 



Fix 0 = s < t = 1 and i = 1,..., k. Hence we obtain 
ŕЛin(t) л ŕe~Es + eE(t-s) 1 

arctan Åï(t) - arctan Л?(s) = dx = — — - dx 
J Я І " ( S ) 1 + * Je" e s 1 + X 

because of A?(f) - AJ(s) __ ee(f - s) and 0 < e~€s = AJ(_). Thus 

/•s + e2e(f-s) j 

arctan >l"(f) — arctan A"(s) ^ e" 
1 + e"2ex -2 £ v .2 

dX < 

/•f j « ^ - 2 . ) 2 -s + e-e(f-s) j 

-S z dx + --— ; , ,x dX + — - dX < 

J s l + x 2 J s (1 + x 2 ) ( l + e-2-x2) J , l + e"2ex2 " 

= arctan f - arctan s + (1 - e_2e) (t - s) + (e2e - 1) (f - s) = 

= arctan t — arctan s + (e2e — e~2e)(t — s) . 

Similarly we obtain a lower limit 
arctan X[{t) - arctan X[{s) = 

/•A ."(f) i /•ees + e"e(f-s) j / •s+e--e(f-s) j 

— ^ , " dx ^ —^ dx = -T-, dx = 
J . V < , ) - + - 2 Je<s 1 + ^ Js l+^X2 

J s l + x2 ; J s ( l + x 2 ) ( l + C
2£x2) J s + e-2 e ( ,_ s ) 1 + e2'*2 

= arctan t — arctan s — (e2e — e~2s)(t — s) . 

Moreover, 

arctan t — arctan s = dx >-(t - s) . 
J . l + x - " 2 V ' 

Therefore, we have a lower and an upper bound 

1 _ 2 ( e - - .--«) ^ a r c t a n A ? ( 0 - arctan „?(s) g j + 2 ( g 2 , _ c _ 2 £ ) 

arctan f — arctan s 

Consequently, 

/arctan Я?(t) - arctan Xfcs) 
й - l n ( l - 2(e2e - e~2e)) 

arctan t — arctan s 

if e is small enough. 

We have proved qfn -+of in D ((0, 1)*). Q.E.D. 
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