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We say that a metric space (X> Q) is strong measure zero if for every sequence 
of positive numbers {en}n€ m there is a sequence of sets {Lrt}n6e> such that X « (jLn 

and diam(Ln) < en for each n. n 

In [GMS] the autors proved a theorem which characterizes strong measure zero 
sets. 

Theorem. X c R is strong measure zero iffVF<ziLimeagreX + -F ^ R 
We strenghten it to the following result. 

Theorem 0. X c R is strong measure zero iff 

VD<zR2,F0se,\ V / ) , « meagre =» |J Dx * R] 
\xeR xeX ) 

Observe that if F is meagre F«,-set then X + F - (J Dx where D - \}{x}x 
x*X *eR 

(F + x). So we see that =» in Theorem 0 implies => in Theorem. It will be shown 
in Theorem 1. The <= in both theorems are very simple but in a case we do not 
need the algebraic structure in the proof. It will be shown in Theorem 2. 

Theorem 1. Let Y be a o-compact metric space, Z a locally compact space or 
completely metrizable space. Then if X c Y is a strong measure zero set then 

VDCYXZ,F0 set\ V Dx is meagre =» U Dx± Z 

Proof. The proof is very similar to the proof of Theorem in [M]. Let D be 
a Fa-set in y X Z with meager vertical sections. Then D — |J Fn are closed with 

nowhere dense vertical sections. We may assume also that FnczFn+l and 
Fna KnX Z, where Kn are compact, Kn c Kn+1 and Y- (J Kn. 
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Lemma. Let C c K x Z be a closed set with nowhere dense vertical sections, 
where K c Yis a compact set. Let Be: Z be a closed ball. Then there exists e > 0 
and a finite family G of closed balls contained in B such that: 

VLC***(L><. 3 ( L X G ) n C « 0 
G*G 

This follow strictly from the compactness of K. Indeed, if x is any point from 
K then there exist ex and a closed ball Gx in Z such that B(x9 ex) X G n C =» 0. 

We can find a finite family {xl9..., xk} of elements of K such that K c (J 5(^„ cx/3). 

It is easy to see, that the family G « {GX(: i -• 1, . . . , A:} and £ — min{ex/3: 
i •- 1, . . . , £} has the required property. 

Using Lemma we will construct a finitely branched tree T c o><6> and a sequen
ces: (Bs)seT of closed balls from Z and (£s)56r of positive real numbers with the 
following properties: 

(1) -V* c Bs 

(2) V56ft/,n rVLC Ydiam(L) < es =» 3(L X 5,**) n F„ - 0 

For every « we define 6n — min {e5: |s| — n & 5 € 7] 
We know that 5n > 0. Now let X c y be a strong measure zero. From the 

definition of the property of strong measure zero we know that there exists 
a sequence of balls {Ln}nea) contained in Y such that X c p| [) Ln and 

m n>m 

diam(Ln) < dn. Now we construct a function/: co -+ a) such that (Ln X BAn+1) n 
F,, - 0. Let JC e H^/ln- F r o m this w e o b t a i n that (fl U Lm X {*}) n |jFn) - 0. 

n n m>/t n 

Theorem 2. Let y 6e a separable metric space, Z Hausdorff, second-countable 
dense in itself space, X c Y. Then if 

(*) VDC yxz> closedset V Dx is meagre •> |J Dx ^ Z 

then X is strong measure zero. 

Proof. Let us assume that we have a sequence (£„)-,««, of positive real numbers. 
We will construct a cover of X (Kn)n6a) with open balls such that diam(Kn) < en. 
Let (Un)n€Q) be a countable base of Z, and for any n < co let (I/n,m)mec> be open 
disjoint sets in Un and let (Bnm)m6(0 be a cover of Y with open balls of diameter 
less than en. Let us fix n < co and put Wn — (J^«.« x ^ r ^ut al s o A. •" 

m 

yxZ\W„andD-- f]^-.-
n 

8 



Clearly D is a closed set in Y X Z. Next we show that V Dx is meagre. For that 
x* ) 

if Un is any base set in Z and x e Y than let m < cy be such ihat xe Bnm. We have 
tf„,m c (|JS,,,m X Un>m)x = (W„), - Z\(Dn)x c Z \ ( f | A,)* - Z\ A so D is 

m m 

meager. From the (*) we obtain U (D)x * z so let z e Z\ U (o)*- Let n < a> 

be fixed. We have that U(->)*" U fl(A0-- U n ( y x Z ^ X - ^ n UTO, 
* e * *** n x e * n J t e * n 

SO( + )2 6 f) U(W„),. 
j r e * n 

Now we define sets (Kn)n€o): For any A* e a> let m e <y be such, that z e Un>m, if 
there exists any In this case we put Kn =* .Bnm. If there does not exist any m e w 
such that z € £/nm we will take as Kn any open ball in Ywith diameter less than 
en. * must check that Jf c |J #„. So let x £ X. From the statement ( + ) we know, 

n 

that :here exists n e <0 such that z e ( Wn)x, that means z e (J(_Bn m X Untfn)x, so we 
m 

must have for some m e cy: z e f/n m and JC e Bn m, and this implies that x £ Kn 

from the definition of Kn. This ends the proof. 

References 

[GMS] GALVIN F., MүaELSKi J. and SOLOVAY R. M., Strong measure zero sets, AMS Notices, 26, 
A-280. 

[M] MILLER A. W., Special subsets of the real line, Handbook of Set Theoretic Topology, (K. Kunen 
and J. Vaughan, Eds.), North-HoUand, Amsterdam, 1984. 


		webmaster@dml.cz
	2012-10-06T01:48:45+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




