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In this paper we continue the research concerning generalized Galois-Tukey connections between 
explicit relations on classical objects of real analysis. We introduce a new (internal) structure related 
with the amoeba forcing (in contrast with external structures related with generic objects) and we show 
it is equivalent to the inclusion restricted to measure zero sets. Finally we complete results adding some 
extremal relations in the Galois-Tukey lattice of binary relations. 

This paper is a continuation of the research we begun in [VI] and continued in 
[V2] and [V3] where we refer the reader concerning the motivation to. 

Definitions and the theory 

For the paper to be selfcontained we present following notation. Assume R is 
a binary relation. The complement (or negation) of R is denoted by —\R = {(x, y): 
x e dom (R) & y e rng (R) & (x, y) £ R}. The inverse R"1 = {(y, x): (x, y) e R}. 

A set B i dom (R) is said to be /^-unbounded if (Vx e rmg (.R)) (3x e B) 
((x, y) <£ R). A set B g rng (R) is said to be R-dominating if 
(Vx e dom (R)) (3y e D) ((x, y) e R). The corresponding "unboundedness"-like 
"bominatedness"-like (abbreviated b- and b-like) cardinal characteristics are the 
following: 

b(R) = min {\B\: B g dom(R) & B is an ^-unbounded set} 
and 

b(R) = min {\D\: D g rng (R) & D is an R-dominating set} 
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In order to avoid undefined or trivial cases we consider in the future only relations 
R such that rng (—iR) = rng (R) and dom (—•#) (when necessary we restrict R to 
some X x Y). Note that in this case b(R) = 2 and b(.R) = 2. 

A restriction of R to X x Y is the relation R n(X x Y) = {(x, y) e R : x e X & 
ye 7}. This restriction will be sometimes abbreviated as i \X x y . We now list 
definitions of some binary relations and set-theoretic representation of objects of 
real analysis. 

(9 I is the set of all open subsets of [0, 1] with measure less than - ; 

S = {f6'»([a)]<"'):V„00|f(n)|<n2}; 

L is the ideal on reals of measure zero sets and IK of sets of first category; 
[CD]™ is the set of infinite subsets of natural numbers and <0a> is the set of all 

functions from natural to natural numbers; 
£x are absolutely summable series of reals and *f°° is the set of all bounded positive 

sequences of reals, h0 g *f °° are those having 0 as an accumulation point; 

L = {(a, X): a e / °° & X e [CD](° & lim a(n) exists}; 
neX 

C= {(a,X): ae/°° & Xe [o)]"> & Vja(n)| < +00}; 
neX 

fl%xr «„) ={(f,g)'-fe (°co and g e »*"co and 3nVkf(k) = g(n, k)} 

(see [B]). 
We also consider the equality restricted to pairs of reals, (= ^2) (in the context 

of Galois-Tukey connection mentioned first in [T]). 
An ordered pair of functions (E, F) is called a (generalized) Galois-Tukey 

connection (also abbreviated as a GT-connection) from R to S if the following holds: 

(a) E : dom (R) -> dom (S) 

(b) F:rng(S)->rng(i?) 

(c) (Vx e dom (R)) (Vi; e rng (5)) (E(x), v)eS implies (x, F(v)) e R. 

The fact that there is a GT-connection from R to S is often rephrased as "R is 
simpler than 5" (using a motivation of J. W. Tukey coming from convergence 
structures). The relation "to be simpler than" forms (after some necessary 
factorization) a partial order on the class of all binary relations, which we denote 
by R .= G1S. 

Assume X0 ^ dom (R) and Y0 £ rng (R) and consider the relation 
R0 = R n (X0 x Y0). We say that R0 is a substantial part of R if R and R0 are 
equivalent in the sense of generalized GT-connection in a special way, that is, that 
the F-mapping of R ^ GTR0 and the E-mapping of R0 ^ GTR are identities. So for 
instance g restricted to G$ sets of measure zero is a substantial part of E(L)-« We 
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will not complicate the topic and in the sequel we always assume we are working 
with some definable substantial part of the relation in question. 

We studied this structure from the point of view of algebraic theory of categories 
in [V2] and from the point of view of lattice theory in [V3]. Here we continue the 
research of [VI], which is oriented mainly to establish connections between explicitly 
defined relations and their influence on forcing, moreover we add a consideration 
about the lattice theoretical point of view. 

Consider two binary relations R and S and define 

R 0 S = {((a, e), (z, v)) :aRz & e = 0 or aSv & 6 = 1} 

and similarly 

R (g) S = {((w, u), (a, e)): wRa & e = 0 or uSa & e = 1} 

The relation _R (g) S is the infimum in the partial order ^ GT and the relation 
_R 0 5 is the supremum in the partial order ^ GTof _R and S. So ^ G:rforms a lattice 
(or equivalently a category with products and coproducts, see [V2] and [V3]). 

We repeat following observations from [VI] on preservation of forcing properties 
to recall what is known on influence of G^connections to forcing. Consider two 
models M <= N of set theory and a definable binary relation _R. We assume moreover 
that all relations are absolute i.e. for x, y e M, xRMy iff xNRNyN. (Note that all 
explicit relatons in our paper are absolute.) Then x e dom (RN) is said to be an 
_RM-unbounded object if for all y e rng (RM) it is not the case that xRNyN. An 
y e rng (R^ is said to be an _RM-dominating object if for all x e dom (R**) we have 
xNRNy. (Our convention about domains and ranges in the begining of the paper 
avoids trivial cases.) 

Sometimes properties of generic extensions are investigated concerning the 
question whether dom (RM)N is i^-unbounded in N and whether rng (RM)N is 
K-dominating in N. Observe that 

(a) {x? : x e dom (RM)} = dom (RM)N is /^-unbounded set in N iff there are no 
_RM-dominating objects in N 
and 

(b) {x? : x e rng (RM)} = rng (RM)N is K-dominating set in N iff there are no 
i?M-unbounded objects in N. 

A definable mapping / : X -> Y is absolute according to models M g N if 
(Vx G XM)(f(xN) = (f(x))N. That is: if / as interpreted in N acts on objects with 
codes in M, it gives the same result as when interpreted in M. 

Assume M £ N and _R is simpler than S witnessed by (£, F) and moreover E is 
absolute according to M and iV. Then if there is an SM-dominating object then 
there is a _RM-dominating object. So the existence of dominating objects is preserved 
in the opposite direction as absolute E-mappings are going. Of course equivalently, 
under the same assumptions if dom (RM)N is an _R-unbounded set in N then dom (SM)^ 
is an S-unbounded set in N. 
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Analogously consider M £ IV and R is simpler than S witnessed by (£, F) and 
moreover F is absolute according to M £ IV. Then if there is an _RM-unbounded 
object then there is an SM-unbounded object; and similarly rng(SM)N being 
S-dominating set implies rng (RM)N is .R-dominating. 

Observe moreover that an _RM-unbounded object is an (-./?" ̂ -dominating object 
and i?M-dominating object is an (-ii?~ ̂ -unbounded object. Using this preservation 
properties we can derive lot of informations about generic extensions (having some 
basic informations). 

Recal that in a simple Cohen extension IV! = M[c] there is an (e n([0,1] x IK))M-
unbounded object (the very Cohen real) and that there are no (e n([0, 1] x K))M-
dominating objects. Analogously for IV2 = M\r\ a random extension there is an 
(e u([0, 1] x L))M-unbounded object (the very random real) and no (e n([0, 1] x 
x K))M-dominating object ([VI]). We extend this dependencies between forcing 
and GT-connections in the sequel by an example of another type. 

Some new relations and connections 

The motivation for the structure £ L x 0 i came first from the paper [M] of A. 

W. Miller, where he noticed the constructive character of the proof (namely (2) of 
Theorem 1). Further the structure £L X0 i is motivated by amoeba forcing-it 

is rather more internal like structure (i.e. connected (at least in one coordinate) with 
forcing conditions)-on contrast with other external like structures (connected with 
generic objects). Though the following theorem follows from results below, we 
present it for historical reasons and to give a direct constructive proof. 

The numbering of indexes of mappings in connections is a continuation of the 
numbering from [VI]. 

Theorem 1. (J. Chichoti, F. Galvin (see [M])) 
(1) The relation ^(*w)2 is simpler than £L X0 j_ 

(2) or equivalently, there are mappings El4:
 (°co -» L and FX4 : 0<i -> wc0 such 

2 

that ifEi4(g) £ G then g ^ *Fl4(G) 
(3) and consequently b ( £ L x t P i ) ^ b and b(£Lx(P J r̂  b. 

Proof. As in [M], namely put 

Eu(g) = {xe (°2 : 3~x \ [g(n)9 g(n + 1)) is identical 0}. 

For an open G e fl^i define first Gn = u{[s]: sen2and[s] £ G} and fix a sequence 
2 

0 0 2 1 

of positive reals en such that £ 2n2en < -. Then put 
n = 0 ^ 
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Fu(G)(n) = min {k:fi(G\Gn) < e„} 

Theorem 2. 

(1) The relation £ L x 0 lis simpler than £(L)2 
2 

(2) or equivalently, there are mappings E{5: L -> L and F15: L -> 0< I swc/i t/zat 

i/£15(Z) £ 7 t/zen X c Fl5(Y) 

(3) (implicitly in [M]) and consequently add (L) ^ b(£L x0 J -^^ 

cof(L)^b(g L x ^i) . 

Proof. Is easy, £15 is identity and Fl5(Y) is any G e 0<i with 7 g G. 
2 

The situation is simplified by following theorem, depending on and quoting an 
idea of J. Cichori with his permision ([C]). 

Theorem 3. 
(1) The relation ^^2 is simpler than gLx<r j. 

(2) or equivalently, there are mappings £16: L -> L and Fl6:&<i-* L such that 

ifEl6(A)^ G then A g Fl6(G) 
(2) ([C], J. Chichori's answer to our question) and consequently 

M - L X ^ I ) _ add(L) and b(gLx(P<1) = cof (L). 
2 2 

Proof. Put 

E 16(,4) = ./! + _ = { x + q : . x e , 4 & 4 e _ } . 

For an open GeO<i define 
2 

F16(G) = n { G + a : a e < 2 } 

The structure D«a>x(a,xo»0l) comes from [B] and represents the relation with 

b(.R) = Ni and b(i?) = 2No. The relation ( = (Ry) and its role in our context was 
motivated by the paper of S. Todorcevic ([T]). In [V3] it is proved that whenever 

2 = b(R), b(R) = 2No then ( + ^) = G7R ^ GT( = ^) . SO this sublattice has the least 
and greatest element. It is natural to ask whether Dc0(0X^>tmf^ does play a similar 

role for relations with Xx ^ b(R), b(R) ^ 2Ko. In our case for relations from [VI] 
and all those restricted to fields of size at most c it is so. 

Theorem 4. Recall we restricted to relations with dom (—\R) = dom (R) and 
rng (-.i?) = rng (R). In this case b(R) = |rng (R)\ and b(R) ^ |dom (R)\. Moreover 
having a relation R with h(R) _ l^ and |dom(l?)| ^ c it follows R ^ GT 

^(ox^^w) (and for dual conditions dually for —iR~l and —D^(lx^^(1^). 
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Proof. Just take the E mapping any injection of dom (R) into (°co. Then as any 
uncountable subset of wc0 is D<»m x (a, x ̂ -unbounded, E maps /^-unbounded sets onto 
Do^x^x^-unbounded ones. 

We give following corollaries, first because in the top of diagrams in [VI] there 
were two relations, namely L ^ x r ^ and _.(*-)2 and second to give constructive 
proofs. 

Corollary 5. 

(1) The relation I^^^^yo is simpler than Dt»(0 x ̂  x ^ 

(2) or equivalently, there are mappings _17: /°° —> w_ and F17:
 WXft_ -• [co~co 

such that if 3nVk_17(a)(k) = g(n, k) then lim a(n) exist. 
neFi7(g) 

Proof. _17 is an approximation of a sequence a e t°° by rationals and for an 
g e w x ° _ (seen as countably many sequences) there is an F17(g) e \co~M such that 
all g(n, — )'s converge on it (this is just the fact that sff = KJ). 

Corollary 6. 

(1) The relation _(*n2 is simpler than D™fi, x (<» x a , ^ 
(2) or equivalently, there are mappings _18: (x -> °_ and F18:

 WX£0_ -> if1 swc/i 
t/iat lf 3rcVk_18(a)(/c) = g(n, k) then a = *Pi8(g) 

Proof. Take _18(a) e °_ n /* to be some upper bound of a and F18(g) is an upper 
bound for all those g(n, —)'s which are in £x (this is possible because 
ItefoHaddfL).**.). 

In [VI] we considered relations <^i y, 2([a>]»p ai-d _(/<*vi)- which are inverse 
of ordering generating complete Boolean algebras (which are at least consistently 
isomorphic each other) and the ordering Ch x[w]«>. We show they are all 
GT-equivalent to ( = #). 

Lemma 7. If P, = is a partial ordering with a pairwise ^ -disjoint family of 
size at least c then =(®y is simpler than _ (i.e. simpler than — ~l). 

Proof. Let A e \_P~\~C is the antichain. Let E: Real -> A is an injection. For 
xeP, if there is an a e Real such that E(a) — x, then (this a is unique) define 
F(x) = a, else F is defined arbitralily. 

Lemma 8. = (®y is simpler than Ch x[w]<». 

Proof. Similarly as before, take an stf ~\ [co]w a maximal disjoint family of size 

c. For A e srf define aA(n) = - if n£ A and a(n) = — •—- if n e A. Let E : 
v ' 2 x ' \Ac\n\ + \ 

Real -» \aA : A e s/} is an injection and for B e [„ ] w is (aA, B) e Ch x[w]«, iff 
B ~\ * A. So put F(B) = E~\aA) if B ~\ * A, if there is such A, or arbitrarily if not. 

The constructions of following four results are essentialy due to T. Bartoszynski 
([Ba]) and J. Raisonier and J. Stern ([SR]), (in our language) they are observed in 
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[T] and some of them implicitly in [VI] (we add them just for the sake of 
completeness and to give constructive proofs). 

Theorem 9. ([Ba], [SR], [T]) 
(1) The relation g * n (wco x S) is simpler than c=(L)2 
(2) or equivatently, there are mappings E{9:

 (t)co -> L and Fl9: D_ -> S such that 
if El9{f) gz X then f gl* Fl9{X) 

Proof. Put 

£19(x)=nO^,/(0). 
/ = o / = / 

Fl9(y)(.)= U {/':' = M») & G(«>;)nC7f=0} 
H = 0 

where fc^) = minjfc:Vi = fc|{/: l /*"n G(U) = 0}| = ^ T ^ } 

°o 

For the following theorem take a base of topology Un with £ A*(£I„) < °° anc* 
n = 0 

we work with increasing functions from (°co and increasing pipes from S (i.e. with 
min {S{i)) tending to infinity, as a substantial part of relation). 

Theorem 10. ([Ba], [SR], [T]) 

(1) The relation £=(IR)- is simpler than £i(*Vi>xS) 
(2) or equivalently, there are mappings E20 : D_ -* Mco and F20 : S -> L suc/i t/zaf 

if £20(X) g\*Sthen X £ F20(S) 

Proof. Take the required functions such that following holds 

* s n 0 tf «*ww 
1 = 0 1 = / 

and 

^o(S)=nO{U;.:j6 5(0} 
/ = 0 » = / 

Theorem 11. ([Ba], [SR]) 
(1) 77ie relation S ^ is simpler than £( ,wx§) 
(2) or equivalently, there are mappings E2l: K -> f"co and F21: S -• IK such 

that ifE2l{X) gl*Sthen X g F21(S) 

Proof. Put 

£2 1(^(i} = min{/:H*nPti , j ) = 0} 
and 
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r21(s) = [o,i]\nun{Ku):j^(0}. 
! = 0 i = / 

in the notation of [VI]. 

Theorem 12. ([Ba]) 
(1) The relation S ^ x s ) is simpler than E(/-)-
(2) or equivalently, there are mappings E22:

 (°co -» £x and F22: £
x -> § such 

that ifE22(f) = * a then f 2 * F22(a) 

Proof. Put E22(f)(n) = max{k~2:n = f(k)} if nerng(f) and 0 else. And 
F22(a)(k) = {n:a(n) = k~2}. 

There are many possible questions on the structure and interrelations between 
external and internal relations respective to some forcing notion. We will not 
formulate any of them, we would like just to stress this type of problems by recalling 
a question of T. Jech ([J]) he posed after our lecture at Oberwolfach 93, namely: 
given a forcing notion, describe a relation which is the canonical internal and 
external one for this forcing. 
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