Acta Universitatis Carolinae. Mathematica et Physica

Marrianna Csörnyei

Differentiability points of a distance function

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 39 (1998), No. 1-2, 105--110
Persistent URL: http://dml.cz/dmlcz/702047

Terms of use:

© Univerzita Karlova v Praze, 1998

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Differentiability Points of a Distance Function

MARRIANNA CSÖRNYEI

Budapest*)

Received 15. March 1998

Let $K \subset[0,1]$ be the usual Cantor set, and let $A \stackrel{\text { def }}{=}\{f \in C(K): 0 \in$ Range $(f)\}$. Its distance function $\varphi: C(K) \rightarrow \mathbf{R}$ is defined by $\varphi(f) \stackrel{\text { def }}{=} \operatorname{dist}(f, A)$.

In this note we characterize the set of the points of the Gâteaux differentiability of this function φ. We prove that, φ is not Gâteaux differentiable at a function f iff $Z_{f}=\{x \in K: f(x)=0\}$ can be covered by disjoint open sets $U_{1}, U_{2}, \ldots, U_{m}$ for which there exist non-zero constants $c_{1}, c_{2}, \ldots, c_{m}$ such that 0 is a porosity point of the set $\bigcup_{n=1}^{m} c_{n} \operatorname{Range}\left(\left.f\right|_{U_{n}}\right)$.

During the attempts to answer the question whether the σ ideal of Aronszajn null sets and Gaussian null sets coincide in a separable Banach space E (see [1], [2]), it was important to study the following strange set:

Let $K \subset[0,1]$ be the usual Cantor set, and let

$$
\begin{equation*}
A \stackrel{\text { def }}{=}\{f \in C(K): 0 \in \operatorname{Range}(f)\} . \tag{1}
\end{equation*}
$$

It is clear that A is a closed subset of $C(K)$. It turned out that A contains a cube, that is, there is a system of functions of dense span $f_{0}, f_{1}, f_{2}, \ldots \in C(K)$ for which $\sum_{i=1}^{\infty}\left\|f_{i}\right\|<\infty$ and $f_{0}+\sum_{i=1}^{\infty} r_{i} f_{i} \in A$ for every sequence $r_{1}, r_{2}, \ldots \in[0,1]$. This surprising fact developed into the idea to look for 'a nearly cube' inside any nonAronszajn null set A, more precisely, to find an appropriate cube $x_{0}+\sum_{i=1}^{\infty} r_{i} x_{i}$ (where $r_{i} \in[0,1], x_{1}, x_{2} \ldots$ is a sequence of the points of E of dense span, and $\left.\sum_{i=1}^{\infty}\left\|x_{i}\right\|<\infty\right)$ such that A is large in this cube, i.e. the Lebesgue measure of the set $\left\{\left(r_{1}, r_{2}, \ldots\right) \in[0,1]^{N}: x_{0}+\sum_{i=1}^{\infty} r_{i} x_{i} \in A\right\}$ is large.

On the other hand, since the set A defined by (1) is not Aronszajn null, it must contain points of Gâteaux differentiability of any Lipschitz function, in particular of its distance function $\varphi: C(K) \rightarrow \mathbf{R}$ defined by

$$
\varphi(f) \stackrel{\text { def }}{=} \operatorname{dist}(f, A) .
$$

[^0]In this note we characterize the set of the points of the differentiability of this function φ. This turned out to be interesting in itself, because of its connection to porosity properties.

Since φ is non-negative, if it is Gâteaux differentiable at a point of A, then its derivative must be 0 . It is easy to see that

$$
\varphi(f)=\inf |f|
$$

Indeed, $\varphi(f) \geq \inf |f|$ is trivial, and for the continuous real function

$$
h_{f}(x) \stackrel{\text { def }}{=}\left\{\begin{array}{lll}
0 & \text { if } \quad|x|<\inf |f| \\
2(x-\inf |f|) & \text { if } \inf |f| \leq|x|<2 \inf |f| \\
x & \text { if } 2 \inf |f| \leq|x|
\end{array}\right.
$$

we have $h_{f} \circ f \in A$ and $\left\|h_{f} \circ f-f\right\|=\inf |f|$.
Thus, φ is differentiable at $f \in A$ iff

$$
\begin{equation*}
\lim _{t \rightarrow 0+} \frac{\varphi(f-t g)-\varphi(f)}{t}=\lim _{t \rightarrow 0+} \frac{\inf |f-t g|}{t}=0 \tag{*}
\end{equation*}
$$

holds for every $g \in C(K)$.
Lemma. If for a sequence x_{n} and a function $g \in C(K)$ we have $x_{n} \rightarrow x, f\left(x_{n}\right) \rightarrow$ $f(x)=0, \frac{f\left(x_{n}\right)}{f\left(x_{n+1}\right)} \rightarrow 1$ and $\operatorname{sgn} g(x)=\operatorname{sgn} f\left(x_{n}\right) \neq 0$ for every n, then φ is differentiable at f in the direction of g, that is, $(*)$ holds for f and g.

Proof. Suppose indirectly that there exists a sequence $t_{n} \searrow 0$ and $\varepsilon>0$ for which $\frac{\left|f-t_{n} g\right|}{t_{n}}>\varepsilon$. Now, for every k and n we have

$$
\frac{\left|f\left(x_{k}\right)-t_{n} g\left(x_{k}\right)\right|}{t_{n}}=\left|f\left(x_{k}\right)\right|\left|\frac{1}{t_{n}}-\frac{g\left(x_{k}\right)}{f\left(x_{k}\right)}\right|>\varepsilon .
$$

Since g is continuous, we have $\operatorname{sgn} g\left(x_{k}\right)=\operatorname{sgn} g(x)=\operatorname{sgn} f\left(x_{k}\right) \neq 0$ if k is large, thus by $g\left(x_{k}\right) \rightarrow g(x) \neq 0$ and $f\left(x_{k}\right) \rightarrow 0$ we have $\lim _{k \rightarrow \infty} \frac{g\left(x_{k}\right)}{f\left(x_{k}\right)}=+\infty$. If n is large enough then we can choose a $k=k(n)$ for which

$$
\frac{g\left(x_{k}\right)}{f\left(x_{k}\right)} \leq \frac{1}{t_{n}}<\frac{g\left(x_{k+1}\right)}{f\left(x_{k+1}\right)}
$$

and for this k have

$$
\frac{g\left(x_{k+1}\right)}{f\left(x_{k+1}\right)}-\frac{g\left(x_{k}\right)}{f\left(x_{k}\right)}>\frac{1}{t_{n}}-\frac{g\left(x_{k}\right)}{f\left(x_{k}\right)}>\frac{\varepsilon}{\left|f\left(x_{k}\right)\right|}
$$

that is

$$
\frac{\left|f\left(x_{k}\right)\right|}{f\left(x_{k+1}\right)} g\left(x_{k+1}\right)-\frac{\left|f\left(x_{k}\right)\right|}{f\left(x_{k}\right)} g\left(x_{k}\right)>\varepsilon
$$

for every $k=k(n)$. Now, if $n \rightarrow \infty$ then $k(n) \rightarrow \infty$ and the left hand side of the inequality above tends to 0 . The obtained contradiction proves the Lemma.

For a given function $f \in C(K)$ let $Z_{f} \stackrel{\text { def }}{=}\{x: f(x)=0\}$.
It is easy to see that if 0 is a porosity point of $\operatorname{Range}(f)$ then either for $g \equiv 1$ or $g \equiv-1,0$ can not be the limit value in $(*)$.

In the case $\left|Z_{f}\right|=1$ we prove the reverse implication, but in the general case the truth is a bit more complicated.

Theorem 1. If for a function f we have $\left|Z_{f}\right|=1$, then φ is Gâteaux differentiable at f if and only if 0 is not a porosity point of $\operatorname{Range}(f)$.

Proof. We have seen that if 0 is a porosity point of $\operatorname{Range}(f)$ then φ is not differentiable. On the other hand, if 0 is not a porosity point of Range (f) then, we can choose sequences x_{n} and x_{n}^{*} for which $f\left(x_{n}\right) \rightarrow f(x)=0, f\left(x_{n}\right)>0$, $\frac{f\left(x_{n}\right)}{f\left(x_{n+1}\right)} \rightarrow 1$ and $f\left(x_{n}^{*}\right) \rightarrow f(x)=0, f\left(x_{n}^{*}\right)<0, \frac{f\left(x_{n}^{*}\right)}{f\left(x_{n+1}^{*}\right)} \rightarrow 1$. Now, applying our Lemma, φ is differentiable at f in the direction g whenever $g(x)>0$ or $g(x)<0$. Finally, for functions g with $g(x)=0$ we have $\varphi(f-t g)-\varphi(f) \equiv 0$, thus the differentiability is trivial.

Now we consider the case $\left|Z_{f}\right|=2$, say $Z_{f}=\{x, y\}$. Let U and V be disjoint open neighbourhoods of x and y. Since K is the Cantor set, we can assume that these open neighbourhoods are closed. Let

$$
P_{f} \stackrel{\text { def }}{=}\left(\operatorname{Range}\left(\left.f\right|_{U}\right) \times \mathbf{R}\right) \cup\left(\mathbf{R} \times \operatorname{Range}\left(\left.f\right|_{V}\right)\right) \subset \mathbf{R}^{2}
$$

Theorem 2. If $\left|Z_{f}\right|=2$ then φ is Gâteaux differentiable at f iff for every line l on the plane different from the axes for which $0 \in l$ the point 0 is not a (linear) porosity point of $l \cap P_{f}$. That is, φ is differentiable at f if and only if for every non-zero constants c_{1}, c_{2}, the value 0 is not a porosity point of the set $c_{1} \operatorname{Range}\left(\left.f\right|_{U}\right) \cup c_{2} \operatorname{Range}\left(\left.f\right|_{V}\right)$.

Proof. First we prove that if 0 is not a porosity point of the sets c_{1} Range $\left(\left.f\right|_{U}\right) \cup c_{2}$ Range $\left(\left.f\right|_{V}\right)$ then $(*)$ holds for every g.

This is clear if $g(x)=0$ or $g(y)=0$, because then $\varphi(f-t g)-\varphi(f) \equiv 0$. In the other case we choose l to be the line of slope $\frac{g(x)}{g(y)}$, that is we choose c_{1} and c_{2} such that $c_{2}: c_{1}=g(x): g(y)$. Then we choose a 'thick' sequence from $l \cap P_{f}$: we choose a sequence $\left\{d(k) f\left(x_{k}\right)\right\}_{k=1}^{\infty}$ where

$$
d(k)= \begin{cases}c_{1} & \text { if } x_{k} \in U \\ c_{2} & \text { if } x_{k} \in V\end{cases}
$$

such that $f\left(x_{k}\right) \rightarrow 0$,

$$
\frac{d(k) f\left(x_{k}\right)}{d(k+1) f\left(x_{k+1}\right)} \rightarrow 1
$$

and

$$
\operatorname{sgn} f\left(x_{k}\right)= \begin{cases}\operatorname{sgn} g(x) & \text { if } x_{k} \in U \\ \operatorname{sgn} g(y) & \text { if } x_{k} \in V\end{cases}
$$

This last assumption means that we choose our points from one of the two half lines of l.

Now, suppose indirectly that (*) doesn't hold. We know that $\frac{g\left(x_{k}\right)}{f\left(x_{k}\right)} \rightarrow+\infty$ (signs are OK). Then, similarly to the proof of the Lemma, there exists an $\varepsilon>0$ and a sequence $t_{n} \searrow 0$ for which

$$
\left|f\left(x_{k}\right)\right|\left|\frac{1}{t_{n}}-\frac{g\left(x_{k}\right)}{f\left(x_{k}\right)}\right|>\varepsilon,
$$

and for an n large enough and suitable $k=k(n)$ we have

$$
\frac{\left|f\left(x_{k}\right)\right|}{f\left(x_{k+1}\right)} g\left(x_{k+1}\right)-\frac{\left|f\left(x_{k}\right)\right|}{f\left(x_{k}\right)} g\left(x_{k}\right)>\varepsilon .
$$

Thus

$$
\left|g\left(x_{k+1}\right)\right|\left|\frac{f\left(x_{k}\right)}{f\left(x_{k+1}\right)}-\frac{g\left(x_{k}\right)}{g\left(x_{k+1}\right)}\right|>\varepsilon .
$$

We choose a subsequence n_{m} such that either all the points $x_{k\left(n_{m}\right)}$ are in U or all of them are in V, and either all the points $x_{k\left(n_{m}\right)+1}$ are in U or all of them are in V. Now, if $m \rightarrow \infty$ then $\frac{f\left(x_{k\left(m_{n}\right)}\right)}{\left.f\left(x_{X\left(m_{m}\right)}\right)+1\right)}$ and $\frac{g\left(x_{k\left(m_{n}\right)}\right)}{g\left(x_{X\left(m_{m}\right)+1}\right)}$ tend to the same number (to $\frac{c_{i}}{c_{j}}$ for some $i, j \in\{1,2\}$), thus the limit of the left hand side of the inequality above is 0 , which is a contradiction.

Now we suppose that 0 is a porosity point of the set $c_{1} \operatorname{Range}\left(\left.f\right|_{U}\right) \cup$ $c_{2} \operatorname{Range}\left(\left.f\right|_{V}\right)$ for some c_{1}, c_{2}. Then there exist an $\varepsilon>0$ and a sequence $t_{n} \downarrow 0$ for which

$$
\frac{\inf \left|t_{n}-c_{1} f\right|_{U} \mid}{t_{n}}>\varepsilon
$$

and

$$
\frac{\inf \left|t_{n}-c_{2} f\right|_{V} \mid}{t_{n}}>\varepsilon
$$

Let g be a continuous function for which $g(z)=1 / c_{1}$ for every $z \in U$ and $g(z)=1 / c_{2}$ for every $z \in V$.

For $t=t_{n}$ we have

$$
\inf _{U} \frac{|f-t g|}{t}=\inf _{U}\left|\frac{f}{t}-\frac{1}{c_{1}}\right|=\frac{1}{\left|c_{1}\right|} \inf _{U}\left|\frac{\left|c_{1} f-t\right|}{t}\right|>\frac{\varepsilon}{\left|c_{1}\right|}
$$

and similarly

$$
\inf _{V} \frac{|f-t g|}{t}>\frac{\varepsilon}{\left|c_{2}\right|}
$$

Finally

$$
\inf _{K \backslash(U \cup V)} \frac{|f-t g|}{t} \geq \frac{\inf _{K \backslash(U \cup V)}|f|}{t}-\max |g|,
$$

and this tends to ∞ if $t \rightarrow 0$. Hence $(*)$ doesn't hold, thus φ is not Gâteaux differentiable at f, as required.

It is easy to see that in the case $\left|Z_{f}\right|=N<\infty$ the result and its proof is similar. Now we consider the general case.

Theorem 3. The function φ is not Gâteaux differentiable iff Z_{f} can be covered by disjoint open sets $U_{1}, U_{2}, \ldots, U_{m}$ for which there exist non-zero constants $c_{1}, c_{2}, \ldots, c_{m}$ such that 0 is a porosity point of the set

$$
\bigcup_{n=1}^{m} c_{n} \operatorname{Range}\left(\left.f\right|_{U_{n}}\right) .
$$

Proof. Assume that for some $U_{1}, U_{2}, \ldots, U_{m}$ and $c_{1}, c_{2}, \ldots, c_{m}$, zero is a porosity point of the above union. We can assume that our disjoint open sets $U_{1}, U_{2}, \ldots, U_{m}$ are closed, and we choose a continuous function g for which $g(z)=1 / c_{i}$ for every $z \in U_{i}$. By a way similar to that of the proof of Theorem 2 we have that f is not a Gâteaux differentiability point of φ.

Now we assume that $(*)$ doesn't hold. Then there exist a function g, an $\varepsilon>0$ and a sequence $t_{n} \searrow 0$ for which

$$
\inf \frac{\left|f-t_{n} g\right|}{t_{n}}>\varepsilon
$$

that is, φ is not differentiable in the direction of g. For every $x \in Z_{f}$ we choose a small neighbourhood U_{x}. We can assume that U_{x} is a set of form $K \cap\left[\frac{k}{3^{n}}, \frac{k+1}{3^{n}}\right]$. For every $\delta>0$ we can choose U_{x} so small that the oscillation of g on U_{x} is less than δ. Moreover, assuming $Z_{f} \cap Z_{g}=\emptyset$ (in the other case φ would trivially be differentiable), we choose U_{x} satisfying $U_{x} \cap Z_{g}=\emptyset$.

Since K is compact we can choose a finite covering $U_{1}, U_{2}, \ldots, U_{m} \subset$ $\left\{U_{x}: x \in Z_{f}\right\}$, and we can also assume that the sets U_{i} are pairwise disjoint. We fix a point $z_{i} \in Z_{f} \cap U_{i}$ for every $1 \leq i \leq m$, and we consider the line $c_{m}: c_{m-1}$: $\ldots: c_{1}=g\left(z_{1}\right): g\left(z_{2}\right): \ldots: g\left(z_{m}\right)$ (we know that $g\left(z_{i}\right) \neq 0$).

Suppose indirectly that 0 is not a porosity point of $\bigcup_{n=1}^{m} c_{n} \operatorname{Range}\left(\left.f\right|_{U_{n}}\right)$, then we can choose a 'thick' sequence on the half line determined by $\operatorname{sgn} g\left(z_{i}\right)=\operatorname{sgn} f\left(x_{i}\right)$ for $x_{i} \in U_{i}$. Now we have

$$
\varepsilon<\left|\frac{f\left(x_{k(n)}\right)}{f\left(x_{k(n)+1}\right)} g\left(x_{k(n)+1}\right)-g\left(x_{k(n)}\right)\right| .
$$

Choosing a subsequence n_{m} for which the points $x_{k\left(n_{m}\right)}$ are in the same set U_{i} and the points $x_{k\left(n_{m}\right)+1}$ are in the same set U_{j} the limes superior of the right hand side of the inequality above is at most

$$
\lim \sup \left|\frac{c_{j}}{c_{i}}\left(g\left(z_{j}\right)+g\left(x_{k(n)+1}\right)-g\left(z_{j}\right)\right)-g\left(z_{i}\right)+g\left(z_{i}\right)-g\left(x_{k(n)}\right)\right|
$$

and $\left(c_{j} / c_{i}\right) g\left(z_{j}\right)-g\left(z_{i}\right)=0$, thus we have the upper bound
$\lim \sup \left|\frac{c_{j}}{c_{i}}\left(g\left(x_{k(n)+1}\right)-g\left(z_{j}\right)\right)+g\left(z_{i}\right)-g\left(x_{k(n)}\right)\right| \leq \delta\left(\left|\frac{c_{j}}{c_{i}}\right|+1\right) \leq\left(\frac{\max _{Z_{f}}|g|}{\min _{Z_{f}}|g|}+1\right)$.
For δ small enough this is a contradiction.

References

[1] Benyamini, Y. and Lindenstrauss, J., Geometric non-linear functional analysis, in preparation.
[2] Csörnyel, M., Aronszajn null and Gaussian null sets coincide, to appear in Isreal Journal of Mathematics.

[^0]: *) Eótvös Loránd University, Department of Analysis, Múzeum krt 6-8, H-1088, Budapest, Hungary
 Research supported by the Hungarian National Foundation for Scientific Research, Grant No. T019476 and FKFP 0189/1997.

