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def

Let K < [0, 1] be the usual Cantor set, and let A = {f € C(K) : 0 € Range( f)}. Its distance function
@ : C(K) - R is defined by ¢(f) = dist(f, A).

In this note we characterize the set of the points of the Gateaux differentiability of this function ¢.
We prove that, ¢ is not Gateaux differentiable at a function f iff Z, = {xe K : f(x) = 0} can be
covered by disjoint open sets U,, U,, ..., U,, for which there exist non-zero constants c,, ¢, ..., ¢,, such
that 0 is a porosity point of the set ( Jr,c, Range(f|y,)-

During the attempts to answer the question whether the o ideal of Aronszajn null
sets and Gaussian null sets coincide in a separable Banach space E (see [1], [2]),
it was important to study the following strange set:

Let K < [0, 1] be the usual Cantor set, and let

AZ {feC(K):0eRange(f)}. (1)

It is clear that A is a closed subset of C(K). It turned out that A contains a cube,
that is, there is a system of functions of dense span fq, f;, f5, ... € C(K) for which

2l fill < oo and fy + Y21 fie A for every sequence ry,1y,... €[0, 1]. This
surprising fact developed into the idea to look for ‘a nearly cube’ inside any non-
Aronszajn null set 4, more precisely, to find an appropriate cube xo + ) /27:X;
(where r;€ [0, 1], x4, x, ... is a sequence of the points of E of dense span, and

21llx;]l < o0) such that A is large in this cube, i.e. the Lebesgue measure of the
set {(r, 72, ...) € [0, 1]V : xo + Y2 4rix; € A} is large.

On the other hand, since the set A defined by (1) is not Aronszajn null, it must
contain points of Gateaux differentiability of any Lipschitz function, in particular
of its distance function ¢ : C(K) — R defined by

(P(f) = diSt(f’ A) :

*) Eotvos Lordnd University, Department of Analysis, Mizeum krt 6-8, H-1088, Budapest, Hungary
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In this note we characterize the set of the points of the differentiability of this
function ¢. This turned out to be interesting in itself, because of its connection to

porosity properties.
Since ¢ is non-negative, if it is Gateaux differentiable at a point of A4, then its

derivative must be 0. It is easy to see that

o(f) = inf|f].
Indeed, (p( f ) > inf|f] is trivial, and for the continuous real function
o [0 if x| < inf|]
hi{x) =9 2(x —inf|f]) if inf|f] < |x|] <2inf|f]
x if 2inf|f] < x|

we have h; Of € A and ||h; O f — f|| = inf|f|.
Thus, ¢ is differentiable at fe A4 iff

lif]n (D(f - tgt) - ¢(f) — lim inflft_ tg| -0 (*)

holds for every g € C(K).

Lemma. If for a sequence x, and a function g € C(K) we have x, — x, f (x,) —
f(x) =0, ’;("")1) — 1 and sgn g(x) = sgn f(x,) # O for every n, then ¢ is dif-
ferentiable at f in the direction of g, that is, () holds for f and g.

Proof. Suppose indirectly that there exists a sequence f, N0 and & > 0 for
which /=4l . 49l > ¢. Now, for every k and n we have

" If(xk) - tng(xk)l _ 1 _ M
—tn =|f (xk)l : f(xk)

Since g is continuous, we have sgn g(x,) = sgn g(x) = sgn f(x,) =+ 0 if k is large,
thus by g(x,) - g(x) + 0 and f(x;) — 0 we have lim,_,, Jf((x)) + 00. If n is large
enough then we can choose a k = k(n) for which

> ¢

g(xk) l g(xk+l)
£ (%) = t, = f(xk+1) ’
and for this k have
g(xk+l) . g(xk) > l . g(xk) > e
FCasr) S0~ ta S) " 1f(x)

that is
}{)Ekxi)ll) 9(xer1) — %j::))l glx) > &

for every k = k(n). Now, if n — oo then k(1) » oo and the left hand side of the
inequality above tends to 0. The obtained contradiction proves the Lemma. |
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For a given function f € C(K) let Z; = {x: f(x) = 0}.

It is easy to see that if O is a porosity point of Range( f ) then either for g = 1
or g = —1,0 can not be the limit value in ().

In the case |Z;| = 1 we prove the reverse implication, but in the general case
the truth is a bit more complicated.

Theorem 1. If for a function f we have |Z/] = 1, then ¢ is Géteaux dif-
ferentiable at f if and only if 0 is not a porosity point of Range( f )

Proof. We have seen that if 0 is a porosity point of Range( f ) then ¢ is not dif-
ferentiable. On the other hand, if 0 is not a porosity point of Range(f) then, we
can choose sequences x, and x* for which f Sx,,) - f(x) =0, f(x,) >0,
Tﬁx—:)l) -1 and f(x)-f(x) =0, f(x} <0, f{i;i) — 1. Now, applying our
Lemma, ¢ is differentiable at f in the direction g whenever g(x) > 0or g(x) < 0.
Finally, for functions g with g(x) = 0 we have ¢(f — tg) — ¢(f) = 0, thus the
differentiability is trivial. , |

Now we consider the case |Z,| = 2, say Z; = {x,y}. Let U and V be disjoint
open neighbourhoods of x and y. Since K is the Cantor set, we can assume that
these open neighbourhoods are closed. Let

P, < (Range(f |v) x R) U (R x Range(f ) = R2.

Theorem 2. If |Z,| = 2 then ¢ is Gateaux differentiable at f iff for every line
I on the plane different from the axes for which 0 € [ the point 0 is not a (linear)
porosity point of [ N P;. That is, ¢ is differentiable at f if and only if for every
non-zero constants c;, c,, the value 0 is not a porosity point of the set

¢, Range( f |y) L ¢, Range(f |y).

Proof. First we prove that if 0 is not a porosity point of the sets
¢y Range(f |y) U c, Range(f |y) then (*) holds for every g.

This is clear if g(x) = 0 or g(y) = 0, because then ¢(f — tg) — ¢(f) = 0. In
the other case we choose [ to be the line of slope z(—’;, that is we choose ¢; and ¢,
such that ¢,: ¢; = g(x): g(y). Then we choose a ‘thick’ sequence from | N Py we
choose a sequence {d(k)f(xy)}i, where

_fe if ;€U
d(k)‘{cz if x,eV’

d(k) £ (xx)
dk + 1) f(xk41)

such that f(x;) = O,
-1,

and
sgng(x) if x,eU

sgn f(xi) = {sgn gly) if x,eV’
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This last assumption means that we choose our points from one of the two half
lines of I

Now, suppose indirectly that (x) doesn’t hold. We know that f(( )) — + 00 (signs
are OK). Then, similarly to the proof of the Lemma, there exists an ¢ > 0 and

a sequence t, \ 0 for which
1 g(xk)

E B f(xk)

and for an n large enough and suitable k = k(n) we have

>,

If(xk)l

fione) = oo > o
Thus ( ) ( )
S (xk g\ Xk

Ig(xk+l)l f(xk+1) - g(xk+1) > ¢€.

We choose a subsequence n,, such that either all the points X, are in U or all
of them are in ¥, and either all the points Xy, are in U or all of them are in V.
Now, if m — oo then /e and (x“‘ =) tend to the same number (to ' for some

1 Ceigroy1)
i, j € {1,2}), thus the limit of the left hand side of the inequality above i i 0, which

is a contradiction.

Now we suppose that O is a porosity point of the set ¢, Range(f|y) v
¢, Range( f |y) for some ¢y, ¢,. Then there exist an ¢ > 0 and a sequence ¢, \ 0 for
which

inf Ity — e/ ol
Ly
and
lﬂflt,, - chlVl >
tn
Let g be a continuous function for which g(z) = 1/c, for every ze U and

g(z) = 1/c, for every ze V.
For t = t, we have

—t 1 af —t
=l 1 les =] e
U t vit ¢ |Cl| t lcsl
and similarly
Mol e
1 t |cal
Finally
—t infx\vo
g Lt infewen Il lgl,
K\UuV) t t
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and this tends to oo if ¢ — 0. Hence (x) doesn’t hold, thus ¢ is not Géteaux dif-
ferentiable at f, as required. |

It is easy to see that in the case |Z = N < oo the result and its proof is similar.
Now we consider the general case.

Theorem 3. The function ¢ is not Gateaux differentiable iff Z, can be covered
by disjoint open sets U, U, ..., U, for which there exist non-zero constants
Cy5 Cay -..» Cny SUch that 0 is a porosity point of the set

{J c. Range(f |v,) -
n=1

Proof. Assume that for some U,, U,,..., U, and ¢, ¢, ..., Cy, ZETO is a porosity
point of the above union. We can assume that our disjoint open sets U, U,, ..., U,,
are closed, and we choose a continuous function g for which g(z) = 1/c; for every
z € U;. By a way similar to that of the proof of Theorem 2 we have that f is not
a Gateaux differentiability point of ¢.

Now we assume that (x) doesn’t hold. Then there exist a function g, an ¢ > 0
and a sequence t, \ 0 for which

If = ,.gl

Pl

inf ————

2

that is, ¢ is not differentiable in the direction of g. For every x € Z, we choose

a small neighbourhood U,. We can assume that U, is a set of form K N [;, k;l].
For every 6 > 0 we can choose U, so small that the oscillation of g on U, is less
than . Moreover, assuming Z; N Z, = § (in the other case ¢ would trivially be
differentiable), we choose U, satisfying U, n Z, = §.

Since K is compact we can choose a finite covering U, U,,..., U, <
{Ux :xe”Z f}, and we can also assume that the sets U, are pairwise disjoint. We fix
a point z;€ Z; n U, for every 1 <i <m, and we consider the line c,:c,_;:

tep = g(z1): 9(zo): ... ( ) (We know that g(z;) + 0).

Suppose indirectly that 0 is not a porosity point of | J7_,c, Range(f |y,), then we
can choose a ‘thick’ sequence on the half line determined by sgn g(z,-) =sgnf (x,-)
for x; € U;. Now we have

\ o) (xk(n)+1) — g(xim) | -

f xk(n)+1
Choosing a subsequence n,, for which the points Xy, are in the same set U; and

the points X,)+1 are in the same set U; the limes superior of the right hand side
of the inequality above is at most

lim sup

2 (g(z) + glxun+) — 9(2) — olz) + o) — gloeun) |
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and (c;/c) g(z) — g(z;) = O, thus we have the upper bound

_ c: ¢ maxg, |g|
li el —9g(z; ) — D <62 1> < (—f— 1).
msup | o)~ o) + o) =) < 3|2+ 1) = (Fzf +
For ¢ small enough this is a contradiction. |
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