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On Approximation by Toeplitz Operators
WOLFGANG LUSKY

Paderborn*)

Received 15. March 1998

We show that the set of compact Toeplitz operators is dense in the space of all compact operators
for many generalized Bergman-Hardy spaces. Moreover the set of p-Schatten class Toeplitz operators
is dense in the p-Schatten class with respect to the p-Schatten class norm for p > 1.

1. Introduction

We study the richness of classes of compact Toeplitz operators on generalized
Bergman-Hardy spaces.

Let T" = {(z, ..., z) €C":|z] = 1, k = 1, ..., n} and let d¢ be the normalized
Haar measure on T". We fix a bounded positive Borel measure u on R? with
supp 4 N (interior of R?) = § and define, for f,g:C" > C,

g = j f(r-exp (i0) glr-exp (i9)) do du(r), £l = <S> -

R%GJT

(Here, r- exp (ip) = (r; €, ...,r,e“") e C") Let L, = Ly(d¢ ® dy) be the cor-
responding Hilbert space (of the classes of measurable functions f with || f|| < o).
We want to consider only such p where all polynomials on C" are elements of
L, (which is the case, for example, if u has compact support.) Then put

H,(u) = closure of {p: C" - C: p a polynomial} = L,

and let P:L, > H 2(;1) be the orthogonal projection. Now, for feL, =
L.(d¢ ® dp), we define the Toeplitz operator

T {Hz(#) — Hy(p)

b — P(fh) with symbol f,

*) Fachbereich 17, Universitit-Gesamthochschule, Warburger Strasse 100, D-33098 Paderborn,
Germany
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which, of course, is an element of
Z = {T: Hyp) > Hy(p) : T linear and bounded}.

Let # = {Te % : T compact}.
It was shown in [2] that, for the measures

du(r) = 1po1pp(r) 1 ... radry ... dr, (the Bergman space)
and
du =re*... r,e”*dr, ... dr, (the Fock space)

the compact Toeplitz operators are dense in 2" with respect to the operator norm.
(In [2] even more general domains 2 < C” than polydiscs were treated.) We shall
give conditions on p which show that this result remains true in our setting for
a large class of measures. Actually we show that there are more specific density
theorems for certain subclasses of Toeplitz operators. In particular, {7} :fev,
T; compact} is dense in 2" where V consists of L(dp)-valued trigonometric
polynomials. Here f is called L,(dy)-valued trigonometric polynomial if f has the
form f =Y ;Fé for some jeZ, where Ffz,..., z,) = |z, ..., |z,]) and
F,eL,, i.e. where F, depends only on the radii (called a radial function), and

ki kn
len 2 = (2) o (22)

if k={(ky..., k,)€Z" z,,..., z,€ C\{0}. |k| means |k| + ... + |k,| (Corollary
2.7.). Put &zy, ..., z,) = 0 if z; = O for some j.

On the other hand, one needs an additional condition on y to have sufficiently
many compact Toeplitz operators. If y is the Dirac measure at (1, ..., 1) e R", then
Hy(p) is the classical Hardy space on T". Here it is known that {T;: f € L,
T; compact} = {0}, so no such density theorem can hold. However, it is always
possible to go over to an equivalent L,-norm on H,(u) defined by a different
measure pio where {T;: f € L, T; compact} is dense in %" (Corollary 2.8.).

Moreover, we deal with &, = {Te A : T is of p-Schatten class} forp > 1, i.e.
T € &, if there are orthonormal systems {g,},{h,} in Hy(u), and 4, € C such that

Th= Y Auhgmy b he Hop), and p,(T) = Y|4.F)'? < 0.
meZ 4
We show that {T;: f € V, T; € &,} is dense in &, with respect to y,.

While {7} : f € L, T; compact| is very often large the set {T; : f € L} is small
in comparison with .. This is discussed in section 3.

Our considerations concentrate on such operators T € .# which can be approxi-
mated (with respect to the operator norm) by finite combinations of shifts and
diagonal operators. In the final section 4 we give characterizations of such
operators.
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2. Density results
For m = (my, ..., m,) € Z% and r - exp (i) = (1€, ..., r, &) e C" put

e, (r- exp (ip)) = r—”‘ém(exp (i9) .
m( p ( ‘P)) \/Im

Here r" = r{"... ri". Then {@,}ncz7 is an orthonormal basis of Ho(w). For
k = (ki,..., k) €Z" and h = ) ,c2n e € Hy(p) put

Skh = Z Bm—kem

m > max (k,0)

(m > max (k, 0) means m, > max (k;, 0), ..., m, > max (k,, 0)).
Now we introduce the main objects of study. At first define

7@}( Y ﬂmem> = Y tPulnm-

n n
meZ”, meZ",

For p > 1 put
My, = {’12%}: {%}e lp} and My = {Ea».}: {“m}eco}'
Let .//lpSk = {’ISk: Te '/”p}
2.1. Lemma. We have

(i) closure of span (Ukéz...///osk) = A (closure with respect to the operator
norm), and

(ii) y,-closure of span (\ JxezntoSi) = &,

Proof. (i) follows from the fact that the finite rank operators are dense in J%".
To prove (ii) note that ./#,S, = ¥, for each k. Moreover #* = &, if p~' +q ' =1
and p > 1, and &* = £ under the duality

(8, Ty = ) (TSe,en ([5]).

n
meZ”,

So, let TeS, if p>1or TeZ if p=1 such that {S,T) = 0 for every
Se,S, keZ". Fix LmeZ" and put k=1—m, ay = {1 m =1
obtain, with § = T, 1S,

0=1(S,T) =Tepss,eny = {Tey,e,).

Hence T = 0. The Hahn-Banach separation theorem completes the proof. O

0 otherwise’

As a direct consequence of the definitions using the orthogonality of the £ we
obtain (see [4])

2.2. Lemma. Consider ke 7", |, m € Z", and a radial function F € L,. Then
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j’Fer—k dli

<7;Ckel’ em> = {\/."er d[l J‘r2m+2k d[l
0 otherwise

l=m-—k

This means Tre, = T{(Tpem—kemdhm s man oSk A0 hence
[Frim=*du p
\/jrz'" du J'r2m—2k du
F 2m—k d
Tye, € MoS; if and only if lim JPrrtde
Moo \/J'rzm du ."r2m—2k du

2.3. Corollary. Let besupp p, A€ |0, 1[, k € Z" and F € L(dy). Then, for any
p=1 TFI[o,Ab]ﬁk € '//lpsk'
(Here, with b = (bl, v b,.),

[0, 4] = {(c1y - ;)10 < ¢; < Ab, j = 1,..., n}).
Proof. Put

1 1
B = {(tl"“’ tn):<§ + 5) bj < t], ] = 1,..., n}.

Since b € B N supp p we have p(B) > 0. Hence

[Flpuw™ *dp | _ ||an< A )ﬂ"’—"'
S du P d| T uB) s +3)
P

Since 0 < A} + 3)~! < 1 we obtain
< 0. O

)

m > max (k,0)

'Tka € .//lpSk if and only if

m > max (k,0)

< 0,

j.Fl[Q, zb]rzm—k dﬂ
\/J‘er d# j'r2m—2k d[l

2.4. Definition. p satisfies condition (#) if there are non-empty sets
I,.., I, c R\ {0} such that I,, ..., I, are bounded and infinite and satisfy the
following:

@) I; x... xI, < supp u,
(ii) for each bel, x... x I, there is ¢ € ]0, 1[ such that
cardinality of ([0, 1 — &] - b N supp p) = 0.

To produce examples we note the straightforward

2.5. Lemma. If supp u contains an interior point with respect to R" then
U satisfies condition ( #).

In particular, the measure of the Bergman space on polydiscs and the measure of
the Fock space (see introduction) satisfy ( #). However we also find easily atomic
measures satisfying ( #).
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Now we come to the main result of this section. For b = (b, ..., b,) € (C\ {0}y
and m = (my, ..., m,) € Z" put b™ = by ... by~

2.6. Theorem. Assume that pu satisfies condition ( #). Let k € 7",
(i) Then,
{Efk :Fe Lw(d[t), lim <’1;7.fkem—k9 em> = 0}

is dense in M S, with respect to the operator norm.
(ii) Forany p > 1,

(T :FeLy(dy), Y Khgenweml < o}

m > max (k,0)
is dense in &, with respect to y,.

Proof. We proceed in two steps. At first we prove the following.
(@) Letbel, x ... xI,and 0 < & < 1 as in condition (#). Consider {o,} € [, and
put

r2m+k

G(r) = Oy .
( ) m2m§(—k,0) \/frz"' du j‘r2m+2k du
Then, we claim, for any A€ ]0, 1[, the series defining G is uniformly convergent
on [0, Ab]. Moreover, if Gl ;g5 = O p-a.e. then a,, = 0 for all m.

Indeed, with B = {(t;, ..., t,): (1/2 + 4/2) b; < t;,j = 1, ..., n} we obtain

r2m+k l 12m+k| 1
<\r2) m
©

“ \[frz”‘ du [rm*+*dp 2 t2 u(B)’

Since A(1/2 + 4/2)' < 1 and y(B) > O (in view of b € supp u N B) this implies
that the series defining G is uniformly convergent. In particular G is continuous on
[0,5[. Assume that Glp_,s = Op-ae. Use condition (#) to find b(m)e
[0,(1 — ¢)[ b supp u with b(m) + b(m') if m + m'. Consider open J-balls
U,(b(m)) centered at b(m) and take into account p(Us(b(m)) > 0. Since
Glpo—gs) = Op-ae. find b(o,m)e Us(b(m)) with G(b(d, m)) = 0. We have
lims_ob(6, m) = b(m). Hence continuity yields G(b(m)) = 0 for all m.
Fix ¢, with 0 < gn < 1 — ¢, b(m) = @,,b and @, # ¢,y if m + m'. Put

g(t) =

150,461(r)

b2m+k
Y Om
mamax(—ko)  ~/JP" dp [P dp

Then g is a uniformly converging power series for t € [0, 1 + ¢]. Since g(g,,,) =0
for all m we obtain

[2m-+k|

b2m+k

)

x =0 foral jeZ,.
2m+k|=j " \/F'” d/*" ~",,2m+2k dﬂ +
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For fixed j this is true for infinitely many b,€l,,..., b,€I,, where b =
(by, by, ..., b,). Using the identity theorem successively in each component for
by b,_1, ..., by we obttain eventually a,, = 0 for all m with |2m + k| = j.

(b) Now we prove the theorem. Recall that #* can be identified with &, if p > 1
and p7'+gq7'=1, and #* = ¥ (see [5]). Fix p> 1 or p = 0 and consider
Y € (A,Si)* such that Y(Ty,) = 0 for every Fe L,(dp) with Tr,, € 4,S,. By
Hahn-Banach we find Te #* if p> 1 and Te #™* if p = 0 with T| 5, = ¥.
Using the duality #* >~ &, #* ~ & and X' * =~ 4, we obtain with Lemma 2.2.

Fr2m+k d[l
0= {TTi e, emy = j
mezz’_"_ F¢ > m > max (—k,0) \/j‘er dll j'r2m+2k d#

Put o, = {Tey+1 e,,). Then {4,} € I,,. Define

<Tem+k3 em> .

r2m+k

o .
m2m§(—k,0) /j‘er dﬂ j‘r2m+2k d[l.

which, according to (a), is well-defined on [0, b[ for all be I, x ... x I, Take
Fe L,(dp) arbitrarily and put, for some Ae]0,1[, F = F1p ). Then, by
Corollary 2.3., Tr, € M,S,. We obtain

G(r) =

0= Z <T’I;"§kem5 em> = j Gl[O,lb]F d/l .
rR%

n
meZ",

Since F € L,(du) was arbitrary we have G1,, ] = 0 p-a.e. Then, in view of (a),
{Tepi1s €my = %y = 0 for all m. This implies y = 0 and the Hahn-Banach
separation theorem proves Theorem 2.6. O

Lemma 2.1. implies
2.7. Corollary. Let p satisfy ( #). Put
V= { feLy:f an Lw(du)-valued trigonometric polynomial}.

(i) Then {T;: f €V, T, € A} is dense in A" with respect to the operator norm.
(ii) For any p > 1 the set {T;: f € V, T, € &} is dense in &, with respect 10 ¥,

Recall that, for 4 = the Dirac measure at (1, ..., 1), {T;: T € ¢’} = {0}.However,
the “richness” of {T;: T, € "} does not depend on the topology of Ha(u).

2.8. Corollary. Let i be any positive bounded Borel measure on R, with
supp i N interior of R =+ 0. Then there is a positive bounded Borel measure
o on R satisfying condition (#) such that Hy(n) = Hy(uo) algebraically and
topologically.

Remark. For p, the density results 2.6. and 2.7. hold.
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Proof of Corollary 2.8. Fix b = (b,,..., b,) € supp u N interior of R%. Let
du, = 1[0,,,/2] dry... dr, and put 4o = p + ;. In view of Lemma 2.5., y, satisfies
(#). Let

1
B = {(tl,..., t,,):Ebj <t,j=1,.., n}.

Then y(B) > 0 since b € B N supp p. For any polynomial h we obtain, using the
maximum principle,

jfwwws'°wwm
R%GJT” JREJT”

T

< [ |hP do du + ([0, %b]) < |h(%b - exp (io))? d(p)
n T"

JRLJT
n

1
< |t do du + w([0,5]) j j‘ P df du .
" (B) S

JRLJT

Hence the L,-norms with respect to dgp @ du and dp & dy, are equivalent. []

3. A non-density result

While {T;: f € L, T; € '} is often quite large the set {T;: f € L} is small in
comparison with Z.

For a function h on C" and A = (44, ..., 4,) € T" put hy(zy, .., z,) = h(A2y, ..., AnZ,)-
For T € & let T, be the operator with T,h = (Thy);, h € Hy(p). Using the fact that
d¢ is a Haar measure we conclude, for f € L,

(’I})l = Tifx) :
If k € Z" define [1nTixp(in)C -k (exp (i@)) do by
(j' Lo )% -4lexp (i) df/’) h = _f (Toxpi)h) E-alexp (i) dop, he Hyp).
™ ™

Clearly, T,€ £ and [1aToxnl-ilexp (ip))dpe £. If k=0 (ie. & = 1) and
T = T, for some {a,} € l,, then |1 Torypdy = T.

3.1. Lemma. Let f € L, and F(r) = [t f(r - exp (i¢)) £_i(exp (ip)) do. Then

I (’I})exp(itp) 5—k(eXP (i(P)) do = Tg, .
-n"'l
Proof. Let h, hi € Hy(y). With Fubini’s theorem we obtain
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<< \ "(Tf)exp(iqa) E_uexp (i9)) d(p> h, ﬁ>

Jr
= \ <f hEXP(i(p)9 ﬁexp(-—i(p)> f—k(eXP (l(p)) d(p
T"

'

= j Foxo o) —1(exD (i) hf dep dy d
TJT"

=( nj‘ ] < i f(r-exp(i(e + ¥)) £_ilexp (ip)) d(p) h(r- exp (iy)) A(r - exp (i¥/)) dy dp

= j F(r) &exp (i) h(r - exp (i) A(r - exp @) dy dp = <TG By O
RGJT"
3.2. Definition. Let v be a positive bounded Borel measure on R,. v satisfies

condition (x) if

21 21+2

! e
j‘R+Q2I dv IR+QZI+2 dv

Similar conditions were treated in [4]. An elementary calculation shows that (x)
holds if supp v is bounded (provided that supp v # {0}). Moreover, () holds, for
example, if dv(g) = ¢™¢7* do.

Let us return to the given measure y on R%. We say that y; is a boundary
measure of p if u(B) = p(R;! x B x R%™") for all Borel sets B = R,.

dv=0.

lim

I-o00 R4

3.3. Theorem. Assume that u has a boundary measure y; satisfying (*). Let
Uy = (—1)" m = (my, ..., m,)) € Z%,.
Then T, ¢ closure of {T:fe Loo}.

Proof. Assume | Tj,,, — T;|| < 1/2 for some f € L. Put F(r)= [ (r-exp (ip))do.
Then {Tze,, e,y = ([Fr*™ du) (jr*" du)~" (Lemma 2.2.) and we obtain

[Frmdu
Sl:lp o, — Irzm—dl«‘ = “T%og,,}_ TF”

= H']-i%} - I (’I})ew(iw) dq’”
'Ir’l
1
= ”T{%} =Tl < 2

Put m(l) = (0, ..., 0, 1,0, ..., 0). Then we have
——
< IF|. j

j—1

."Fr2m(l) dﬂ' j‘Fer(l+ 1) du
J‘r2m(l) du - J'r2m(l+ 04 "

2 2042
Y 4

j‘QZI d/tj - J‘QZI+2 d,uj

dy.
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In view of (x), it follows that
2 = lirln SUP 0ty — X1l < 1
a contradiction. O

In [2] it was shown that, in the case of the Bergman space for n = 1 and the Fock
space, even the C*-algebra generated by {7} : f € L} is not dense in Z.

4. The space /S,

Here we deal with M« = {T,): {om} € lo}. We have seen that .« ¢ closure
of {T}: € L} in general. Note that T € span(| Jxez».#Sk) if and only if there is
j € Z4 such that {(Tei, eny = 0 whenever || — m| > j. For Te £ let

Ikl <j J ™

Toxp ) - dexp (ip)) dop

Then ;T € span(UkeZn.//ImSk). Moreover, (0;T;) = T,,, where
k
of= 3 1= 'j Forp i —4(exP (i9)) dop .
[kl <j

It is easily seen that o;f is an Lw(du)-valued trigonometric polynomial. (See
Lemma 3.1.)
Let g: & — £/A be the quotient map.

4.1. Theorem. The following are equivalent
(a) T e closure of span(| Jxezn#Sk)-
(b) Th V= 2 s continuou
\)
emapy . T, is continu

T > LA
(c) The map { i : q/n is continuous
(d) lim;_ 19T — qo;T|| =0
(e) lim o, |T — o;T|| =0
Proof. (a) = (b) follows from the fact that the map

A (T{%}Sk)l = (T{%}Sk) 2
is continuous.

(b) = (), (¢) = (a) and (e) = (d) are clear. (d) = (a) follows from the fact that
0,T € span(| Jiezn# i) and A" < closure of span(| Jiezn#S)-

(¢) = (a): By assumption the map A+ qT; is Bochner-integrable with respect to
de. In particular, {qT;: 2 € T"} is separable. Moreover, /" is separable in view of
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Lemma 2.1.(i). We conclude that { T: e 'lT"} is separable and, hence, A+ T is
Bochner-integrable. This implies

k
oqT := Z | !

Ikl <j

th‘?xp (i(p)é—k(exp (i(p)) d(p = q(aj T) N
T"

For any ¥ € (.Z/.%’ )*, ¥(qT;) is continuous in 4. We obtain

2 S [ wlaTeaio) e i) 0 = Hoa) = WatoT),
[kl <j
and limj_.wlﬁ( T) = y(gT). (Y(oqT) are the “usual” Cesaro means of ¥(qT;) at
A= (L,...,1), se [3]).

By Mazur’s theorem ([1]), lim;,[|gT; — qT|| = O for suitable convex combi-
nations T; of the o;T. Since T; € span(| Jiczn# S this yields ¢T e g(closure of
span(( Jezn M Sk))- Smce A < closure of span(| Jxezn#Si) we derive (a).

(a) = (¢): Find T; € span(( JxeznMSi) with lim;_,| T — T;|| = 0. We easily obtain
le{T — T)ll < IT — T|| for each j and I. Moreover, since T; is a finite sum of
operators of the form Tj,,S;, we have lim;,.||T; — o;T)| =0 for each I Fix
e >0, [ and j, with

IT Tl <% and 0T — T <3 for j  jo.

W ™

Hence
IT—oT| <IT—-TI+IT—9oTl + lo;T; —0,T| <e

and lim;,,,|T — o;T|| = 0. O

4.2. Corollary. Let f € L. Then the following are equivalent
(a) T; € closure of span(| Jyezn#S).

T > 2 )
(b) The map { P T, is continuous

Th =2/ is continuous
(c) The map i qT, i
(d) limy..., 19Ty — qT,,f = 0

(e) limp,,|T; — T4 =0
Toeplitz operators satisfying Corollary 4.2. were studied in [4].

References

[1] ConwaAy, J. B., A course in functional analysis, Springer, Berlin-Heidelberg-New York-Tokyo, 1985.

[2] EncLis, M., Density of algebras generated by Toeplitz operators on Bergman spaces, Ark. Mat. 30,
No. 2, 227 —243 (1992).

[3] HorrMAN, K., Banach spaces of analytic functions, Prentice Hall, Englewood Cliffs, 1962.

[4] Lusky, W., Toeplitz operators on generalized Bergman-Hardy spaces, submitted for publication.

[5] Zuu, K., Operator theory in function spaces, Marcel Dekker Inc., New York, 1990.

146



		webmaster@dml.cz
	2012-10-06T03:20:52+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




