Acta Universitatis Carolinae. Mathematica et Physica

Wolfgang Lusky
On approximation by Toeplitz operators

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 39 (1998), No. 1-2, 137--146

Persistent URL: http://dml.cz/dmlcz/702051

Terms of use:

© Univerzita Karlova v Praze, 1998

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

On Approximation by Toeplitz Operators

WOLFGANG LUSKY

Paderborn*)
Received 15. March 1998

We show that the set of compact Toeplitz operators is dense in the space of all compact operators for many generalized Bergman-Hardy spaces. Moreover the set of p-Schatten class Toeplitz operators is dense in the p-Schatten class with respect to the p-Schatten class norm for $p \geq 1$.

1. Introduction

We study the richness of classes of compact Toeplitz operators on generalized Bergman-Hardy spaces.

Let $\mathbb{T}^{n}=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}:\left|z_{k}\right|=1, k=1, \ldots, n\right\}$ and let $\mathrm{d} \varphi$ be the normalized Haar measure on \mathbb{T}^{n}. We fix a bounded positive Borel measure μ on \mathbb{R}_{+}^{n} with $\operatorname{supp} \mu \cap\left(\right.$ interior of $\left.\mathbb{R}_{+}^{n}\right) \neq \emptyset$ and define, for $f, g: \mathbb{C}^{n} \rightarrow \mathbb{C}$,

$$
\langle f, g\rangle=\int_{\mathbb{R}_{+}^{n}} \int_{\mathbb{\pi}^{n}} f(r \cdot \exp (i \varphi)) \overline{g(r \cdot \exp (i \varphi))} \mathrm{d} \varphi \mathrm{~d} \mu(r), \quad\|f\|_{2}=\sqrt{\langle f, f\rangle}
$$

(Here, $r \cdot \exp (i \varphi)=\left(r_{1} \mathrm{e}^{i \varphi_{1}}, \ldots, r_{n} \mathrm{e}^{i \varphi_{n}}\right) \in \mathbb{C}^{n}$.) Let $L_{2}=L_{2}(\mathrm{~d} \varphi \otimes \mathrm{~d} \mu)$ be the corresponding Hilbert space (of the classes of measurable functions f with $\|f\|<\infty$). We want to consider only such μ where all polynomials on \mathbb{C}^{n} are elements of L_{2} (which is the case, for example, if μ has compact support.) Then put

$$
H_{2}(\mu)=\text { closure of }\left\{p: \mathbb{C}^{n} \rightarrow \mathbb{C}: p \text { a polynomial }\right\} \subset L_{2}
$$

and let $P: L_{2} \rightarrow H_{2}(\mu)$ be the orthogonal projection. Now, for $f \in L_{\infty}=$ $L_{\infty}(\mathrm{d} \varphi \otimes \mathrm{d} \mu)$, we define the Toeplitz operator

$$
T_{f}:\left\{\begin{array}{ll}
H_{2}(\mu) & \rightarrow H_{2}(\mu) \\
h & \mapsto P(f \cdot h)
\end{array} \quad \text { with symbol } f,\right.
$$

[^0]which, of course, is an element of
$$
\mathscr{L}:=\left\{T: H_{2}(\mu) \rightarrow H_{2}(\mu): T \text { linear and bounded }\right\} .
$$

Let $\mathscr{K}=\{T \in \mathscr{L}: T$ compact $\}$.
It was shown in [2] that, for the measures

$$
\mathrm{d} \mu(r)=1_{[0,1]^{7}}(r) r_{1} \ldots r_{n} \mathrm{~d} r_{1} \ldots \mathrm{~d} r_{n} \quad \text { (the Bergman space) }
$$

and

$$
\mathrm{d} \mu=r_{1} \mathrm{e}^{-r_{1}^{2} / 2} \ldots r_{n} \mathrm{e}^{-r_{n}^{2} / 2} \mathrm{~d} r_{1} \ldots \mathrm{~d} r_{n} \quad \text { (the Fock space) }
$$

the compact Toeplitz operators are dense in \mathscr{K} with respect to the operator norm. (In [2] even more general domains $\Omega \subset \mathbb{C}^{n}$ than polydiscs were treated.) We shall give conditions on μ which show that this result remains true in our setting for a large class of measures. Actually we show that there are more specific density theorems for certain subclasses of Toeplitz operators. In particular, $\left\{T_{f}: f \in V\right.$, T_{f} compact $\}$ is dense in \mathscr{K} where V consists of $L_{\infty}(\mathrm{d} \mu)$-valued trigonometric polynomials. Here f is called $L_{\infty}(\mathrm{d} \mu)$-valued trigonometric polynomial if f has the form $f=\sum_{|k|<j} F_{k} \xi_{k}$ for some $j \in \mathbb{Z}_{+}$where $F_{k}\left(z_{1}, \ldots, z_{n}\right)=F_{k}\left(\left|z_{1}\right|, \ldots,\left|z_{n}\right|\right)$ and $F_{k} \in L_{\infty}$, i.e. where F_{k} depends only on the radii (called a radial function), and

$$
\xi_{k}\left(z_{1}, \ldots, z_{n}\right)=\left(\frac{z_{1}}{\left|z_{1}\right|}\right)^{k_{1}} \ldots\left(\frac{z_{n}}{\mid z_{n}}\right)^{k_{n}}
$$

if $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n}, z_{1}, \ldots, z_{n} \in \mathbb{C} \backslash\{0\}$. $|k|$ means $\left|k_{1}\right|+\ldots+\left|k_{n}\right|$ (Corollary 2.7.). Put $\xi_{k}\left(z_{1}, \ldots, z_{n}\right)=0$ if $z_{j}=0$ for some j.

On the other hand, one needs an additional condition on μ to have sufficiently many compact Toeplitz operators. If μ is the Dirac measure at $(1, \ldots, 1) \in \mathbb{R}_{+}^{n}$ then $H_{2}(\mu)$ is the classical Hardy space on \mathbb{T}^{n}. Here it is known that $\left\{T_{f}: f \in L_{\infty}\right.$, T_{f} compact $\}=\{0\}$, so no such density theorem can hold. However, it is always possible to go over to an equivalent L_{2}-norm on $H_{2}(\mu)$ defined by a different measure μ_{0} where $\left\{T_{f}: f \in L_{\infty}, T_{f}\right.$ compact $\}$ is dense in \mathscr{K} (Corollary 2.8.).

Moreover, we deal with $\mathscr{S}_{p}=\{T \in \mathscr{K}: T$ is of p-Schatten class $\}$ for $p \geq 1$, i.e. $T \in \mathscr{S}_{p}$ if there are orthonormal systems $\left\{g_{m}\right\},\left\{h_{m}\right\}$ in $H_{2}(\mu)$, and $\lambda_{m} \in \mathbb{C}$ such that

$$
T h=\sum_{m \in \mathbb{Z}_{+}} \lambda_{m}\left\langle h, g_{m}\right\rangle h_{m}, h \in H_{2}(\mu), \quad \text { and } \quad \gamma_{p}(T)=\left(\sum\left|\lambda_{m}\right|^{p}\right)^{1 p}<\infty .
$$

We show that $\left\{T_{f}: f \in V, T_{f} \in \mathscr{S}_{p}\right\}$ is dense in \mathscr{S}_{p} with respect to γ_{p}.
While $\left\{T_{f}: f \in L_{\infty}, T_{f}\right.$ compact $\}$ is very often large the set $\left\{T_{f}: f \in L_{\infty}\right\}$ is small in comparison with \mathscr{L}. This is discussed in section 3.

Our considerations concentrate on such operators $T \in \mathscr{L}$ which can be approximated (with respect to the operator norm) by finite combinations of shifts and diagonal operators. In the final section 4 we give characterizations of such operators.

2. Density results

For $m=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}_{+}^{n}$ and $r \cdot \exp (i \varphi)=\left(r_{1} \mathrm{e}^{i \varphi_{1}}, \ldots, r_{n} \mathrm{e}^{i \varphi_{n}}\right) \in \mathbb{C}^{n}$ put

$$
e_{m}(r \cdot \exp (i \varphi))=\frac{r^{m} \xi_{m}(\exp (i \varphi))}{\sqrt{\int_{\mathbb{R}_{+}^{n}} r^{2 m} \mathrm{~d} \mu}}
$$

Here $r^{m}=r_{1}^{m_{1}} \ldots r_{n}^{m_{n}}$. Then $\left\{e_{m}\right\}_{m \in \mathbb{Z}_{+}^{n}}$ is an orthonormal basis of $H_{2}(\mu)$. For $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n}$ and $h=\sum_{m \in \mathbb{Z}_{+}^{n}+} \beta_{m} e_{m} \in H_{2}(\mu)$ put

$$
S_{k} h=\sum_{m \geq \max (k, 0)} \beta_{m-k} e_{m}
$$

$\left(m \geq \max (k, 0)\right.$ means $\left.m_{1} \geq \max \left(k_{1}, 0\right), \ldots, m_{n} \geq \max \left(k_{n}, 0\right)\right)$.
Now we introduce the main objects of study. At first define

$$
T_{\left\{\alpha_{k}\right\}}\left(\sum_{m \in \mathbb{Z}_{+}^{n}} \beta_{m} e_{m}\right)=\sum_{m \in \mathbb{Z}_{+}^{\alpha}} \alpha_{m} \beta_{m} e_{m} .
$$

For $p \geq 1$ put

$$
\mathscr{M}_{p}=\left\{T_{\left\{\alpha_{m}\right\}}:\left\{\alpha_{m}\right\} \in l_{p}\right\} \quad \text { and } \quad \mathscr{M}_{0}=\left\{T_{\left\{a_{m}\right\}}:\left\{\alpha_{m}\right\} \in c_{0}\right\} .
$$

Let $\mathscr{M}_{p} S_{k}=\left\{T S_{k}: T \in \mathscr{M}_{p}\right\}$.
2.1. Lemma. We have
(i) closure of span $\left(\bigcup_{k \in \mathbb{Z}^{n} \cdot} \mathscr{M}_{0} S_{k}\right)=\mathscr{K}$ (closure with respect to the operator norm), and
(ii) γ_{p}-closure of $\operatorname{span}\left(\bigcup_{k \in \mathbb{Z}^{n}} \mathscr{M}_{0} S_{k}\right)=\mathscr{S}_{p}$.

Proof. (i) follows from the fact that the finite rank operators are dense in \mathscr{K}. To prove (ii) note that $\mathscr{M}_{p} S_{k} \subset \mathscr{S}_{p}$ for each k. Moreover $\mathscr{S}_{p}^{*}=\mathscr{S}_{q}$, if $p^{-1}+q^{-1}=1$ and $p>1$, and $\mathscr{S}_{1}^{*}=\mathscr{L}$ under the duality

$$
\langle S, T\rangle=\sum_{m \in \mathbb{Z}_{+}^{n}}\left\langle T S e_{m}, e_{m}\right\rangle \text { ([5]). }
$$

So, let $T \in \mathscr{S}_{q}$ if $p>1$ or $T \in \mathscr{L}$ if $p=1$ such that $\langle S, T\rangle=0$ for every $S \in \mathscr{M}_{p} S_{k}, k \in \mathbb{Z}^{n}$. Fix $l, m \in \mathbb{Z}_{+}^{n}$ and put $k=l-m, \alpha_{m^{\prime}}=\left\{\begin{array}{l}1 \quad m^{\prime}=l \\ 0 \text { otherwise }\end{array}\right.$. We obtain, with $S=T_{\left\{q_{n}\right\}} S_{k}$,

$$
0=\langle S, T\rangle=\left\langle T e_{m+k}, e_{m}\right\rangle=\left\langle T e_{l}, e_{m}\right\rangle
$$

Hence $T=0$. The Hahn-Banach separation theorem completes the proof.
As a direct consequence of the definitions using the orthogonality of the ξ_{l} we obtain (see [4])
2.2. Lemma. Consider $k \in \mathbb{Z}^{n}, l, m \in \mathbb{Z}_{+}^{n}$ and a radial function $F \in L_{\infty}$. Then

$$
\left\langle T_{F \xi_{k}} e_{l}, e_{m}\right\rangle=\left\{\begin{array}{cc}
\frac{\int F r^{2 m-k} \mathrm{~d} \mu}{\sqrt{\int r^{2 m} \mathrm{~d} \mu \int r^{2 m+2 k} \mathrm{~d} \mu}} l=m-k \\
0 & \text { otherwise }
\end{array}\right.
$$

This means $T_{F \xi_{k}}=T_{\left\{\left\langle T_{F \xi_{k}} e_{m-k}, e_{m}\right\rangle_{m \geq \max (k, 0)} S_{k} \text { and hence }, ~\right.}^{\text {m }}$

$$
\begin{gathered}
T_{F \xi_{k}} \in \mathscr{M}_{p} S_{k} \text { if and only if } \sum_{m \geq \max (k, 0)}\left|\frac{\int F r^{2 m-k} \mathrm{~d} \mu}{\sqrt{\int r^{2 m} \mathrm{~d} \mu r^{2 m-2 k} \mathrm{~d} \mu}}\right|^{p}<\infty, \\
T_{F \xi_{k}} \in \mathscr{M}_{0} S_{k} \text { if and only if } \lim _{m \rightarrow \infty} \frac{\int F r^{2 m-k} \mathrm{~d} \mu}{\sqrt{\int r^{2 m} \mathrm{~d} \mu r^{2 m-2 k} \mathrm{~d} \mu}}=0 .
\end{gathered}
$$

2.3. Corollary. Let $b \in \operatorname{supp} \mu, \lambda \in] 0,1\left[, k \in \mathbb{Z}^{n}\right.$ and $F \in L_{\infty}(\mathrm{d} \mu)$. Then, for any $p \geq 1, T_{F_{[0,2 b]]_{k}^{5}}^{\xi_{k}}} \in \mathscr{M}_{p} S_{k}$.
(Here, with $b=\left(b_{1}, \ldots, b_{n}\right)$,

$$
\left.[0, \lambda b]=\left\{\left(c_{1}, \ldots, c_{n}\right): 0 \leq c_{j} \leq \lambda b_{j}, j=1, \ldots, n\right\}\right) .
$$

Proof. Put

$$
B=\left\{\left(t_{1}, \ldots, t_{n}\right):\left(\frac{1}{2}+\frac{\lambda}{2}\right) b_{j}<t_{j}, j=1, \ldots, n\right\} .
$$

Since $b \in B \cap \operatorname{supp} \mu$ we have $\mu(B)>0$. Hence

$$
\left|\frac{\int F 1_{[0, \lambda b} r^{2 m-k} \mathrm{~d} \mu}{\sqrt{\int r^{2 m} \mathrm{~d} \mu \int r^{2 m-2 k} \mathrm{~d} \mu}}\right| \leq \frac{\|F\|_{\infty}}{\mu(B)}\left(\frac{\lambda}{\frac{1}{2}+\frac{\lambda}{2}}\right)^{|2 m-k|} .
$$

Since $0<\lambda\left(\frac{1}{2}+\frac{1}{2}\right)^{-1}<1$ we obtain

$$
\sum_{m \geq \max (k, 0)}\left|\frac{\int F 1_{[0,2 b} \mathrm{r}^{2 m-k} \mathrm{~d} \mu}{\sqrt{\int r^{2 m} \mathrm{~d} \mu \int r^{2 m-2 k} \mathrm{~d} \mu}}\right|^{p}<\infty .
$$

2.4. Definition. μ satisfies condition (\#) if there are non-empty sets $I_{1}, \ldots, I_{n} \subset \mathbb{R}_{+} \backslash\{0\}$ such that I_{2}, \ldots, I_{n} are bounded and infinite and satisfy the following:
(i) $I_{1} \times \ldots \times I_{n} \subset \operatorname{supp} \mu$,
(ii) for each $b \in I_{1} \times \ldots \times I_{n}$ there is $\left.\varepsilon \in\right] 0,1[$ such that cardinality of $([0,1-\varepsilon] \cdot b \cap \operatorname{supp} \mu)=\infty$.
To produce examples we note the straightforward
2.5. Lemma. If supp μ contains an interior point with respect to \mathbb{R}^{n} then μ satisfies condition (\#).
In particular, the measure of the Bergman space on polydiscs and the measure of the Fock space (see introduction) satisfy (\#). However we also find easily atomic measures satisfying (\#).

Now we come to the main result of this section. For $b=\left(b_{1}, \ldots, b_{n}\right) \in(\mathbb{C} \backslash\{0\})$ and $m=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}^{n}$ put $b^{m}=b_{1}^{m_{1}} \ldots b_{n}^{m_{n}}$.
2.6. Theorem. Assume that μ satisfies condition (\#). Let $k \in \mathbb{Z}^{n}$.
(i) Then,

$$
\left\{T_{F \xi_{k}}: F \in L_{\infty}(\mathrm{d} \mu), \lim _{m \rightarrow \infty}\left\langle T_{F \xi_{k}} e_{m-k}, e_{m}\right\rangle=0\right\}
$$

is dense in $\mathscr{M}_{0} S_{k}$ with respect to the operator norm.
(ii) For any $p \geq 1$,

$$
\left\{T_{F \xi_{k}}: F \in L_{\infty}(\mathrm{d} \mu), \quad \sum_{m \geq \max (k, 0)}\left|\left\langle T_{F \xi_{k}} e_{m-k}, e_{m}\right\rangle\right|^{p}<\infty\right\}
$$

is dense in \mathscr{S}_{p} with respect to γ_{p}.
Proof. We proceed in two steps. At first we prove the following.
(a) Let $b \in I_{1} \times \ldots \times I_{n}$ and $0<\varepsilon<1$ as in condition (\#). Consider $\left\{\alpha_{m}\right\} \in l_{\infty}$ and put

$$
G(r)=\sum_{m \geq \max (-k, 0)} \alpha_{m} \frac{r^{2 m+k}}{\sqrt{\int r^{2 m} \mathrm{~d} \mu \int r^{2 m+2 k} \mathrm{~d} \mu}} .
$$

Then, we claim, for any $\lambda \in] 0,1[$, the series defining G is uniformly convergent on $[0, \lambda b]$. Moreover, if $G 1_{[0,(1-\varepsilon) b]}=0 \mu$-a.e. then $\alpha_{m}=0$ for all m.
Indeed, with $B=\left\{\left(t_{1}, \ldots, t_{n}\right):(1 / 2+\lambda / 2) b_{j}<t_{j}, j=1, \ldots, n\right\}$ we obtain

$$
\left\|\frac{r^{2 m+k}}{\sqrt{\int r^{2 m} \mathrm{~d} \mu \int r^{2 m+2 k} \mathrm{~d} \mu}} 1_{[0, \lambda b]}(r)\right\|_{\infty} \leq\left(\frac{\lambda}{\frac{1}{2}+\frac{\lambda}{2}}\right)^{|2 m+k|} \frac{1}{\mu(B)} .
$$

Since $\lambda(1 / 2+\lambda / 2)^{-1}<1$ and $\mu(B)>0$ (in view of $b \in \operatorname{supp} \mu \cap B$) this implies that the series defining G is uniformly convergent. In particular G is continuous on $\left[0, b\left[\right.\right.$. Assume that $G 1_{[0,(1-\varepsilon) b]}=0 \mu$-a.e. Use condition (\#) to find $b(m) \in$ $\left[0,(1-\varepsilon)\left[\cdot b \cap \operatorname{supp} \mu\right.\right.$ with $b(m) \neq b\left(m^{\prime}\right)$ if $m \neq m^{\prime}$. Consider open δ-balls $U_{\delta}(b(m))$ centered at $b(m)$ and take into account $\mu\left(U_{\delta}(b(m))>0\right.$. Since $G 1_{[0,(1-\varepsilon) b]}=0 \mu$-a.e. find $b(\delta, m) \in U_{\delta}(b(m))$ with $G(b(\delta, m))=0$. We have $\lim _{\delta \rightarrow 0} b(\delta, m)=b(m)$. Hence continuity yields $G(b(m))=0$ for all m.

Fix ϱ_{m} with $0<\varrho_{m} \leq 1-\varepsilon, b(m)=\varrho_{m} b$ and $\varrho_{m} \neq \varrho_{m^{\prime}}$ if $m \neq m^{\prime}$. Put

$$
g(t)=\sum_{m \geq \max (-k, 0)} \alpha_{m} \frac{b^{2 m+k}}{\sqrt{\int r^{2 m} \mathrm{~d} \mu \int r^{2 m+2 k} \mathrm{~d} \mu}} t^{|2 m+k|} .
$$

Then g is a uniformly converging power series for $t \in[0,1+\varepsilon]$. Since $g\left(\varrho_{m}\right)=0$ for all m we obtain

$$
\sum_{|2 m+k|=j} \alpha_{m} \frac{b^{2 m+k}}{\sqrt{\int r^{2 m} \mathrm{~d} \mu \int r^{2 m+2 k} \mathrm{~d} \mu}}=0 \quad \text { for all } j \in \mathbb{Z}_{+} .
$$

For fixed j this is true for infinitely many $b_{2} \in I_{2}, \ldots, b_{n} \in I_{n}$, where $b=$ $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$. Using the identity theorem successively in each component for $b_{n}, b_{n-1}, \ldots, b_{2}$ we obttain eventually $\alpha_{m}=0$ for all m with $|2 m+k|=j$.
(b) Now we prove the theorem. Recall that \mathscr{S}_{p}^{*} can be identified with \mathscr{S}_{q}, if $p>1$ and $p^{-1}+q^{-1}=1$, and $\mathscr{S}_{1}^{*} \cong \mathscr{S}_{1}$ (see [5]). Fix $p \geq 1$ or $p=0$ and consider $\psi \in\left(\mathscr{M}_{p} S_{k}\right)^{*}$ such that $\psi\left(T_{F \xi_{k}}\right)=0$ for every $F \in L_{\infty}(\mathrm{d} \mu)$ with $T_{F \xi_{k}} \in \mathscr{M}_{p} S_{k}$. By Hahn-Banach we find $T \in \mathscr{S}_{p}^{*}$ if $p \geq 1$ and $T \in \mathscr{K}^{*}$ if $p=0$ with $\left.T\right|_{\mathscr{H}_{p} s_{k}}=\psi$. Using the duality $\mathscr{S}_{p}^{*} \cong \mathscr{S}_{q}, \mathscr{S}_{1}^{*} \cong \mathscr{L}$ and $\mathscr{K}^{*} \cong \mathscr{S}_{1}$, we obtain with Lemma 2.2.

$$
0=\sum_{m \in \mathbb{Z}_{+}^{n}}\left\langle T T_{F \xi_{k}} e_{m}, e_{m}\right\rangle=\sum_{m \geq \max (-k, 0)} \frac{\int F r^{2 m+k} \mathrm{~d} \mu}{\sqrt{\int r^{2 m} \mathrm{~d} \mu \int r^{2 m+2 k} \mathrm{~d} \mu}}\left\langle T e_{m+k}, e_{m}\right\rangle .
$$

Put $\alpha_{m}=\left\langle T e_{m+k}, e_{m}\right\rangle$. Then $\left\{\alpha_{m}\right\} \in l_{\infty}$. Define

$$
G(r)=\sum_{m \geq \max (-k, 0)} \alpha_{m} \frac{r^{2 m+k}}{\sqrt{\int r^{2 m} \mathrm{~d} \mu \int r^{2 m+2 k} \mathrm{~d} \mu}} .
$$

which, according to (a), is well-defined on $\left[0, b\left[\right.\right.$ for all $b \in I_{1} \times \ldots \times I_{n}$. Take $\tilde{F} \in L_{\infty}(\mathrm{d} \mu)$ arbitrarily and put, for some $\left.\lambda \in\right] 0,1\left[, F=\tilde{F} 1_{[0, \lambda b]}\right.$. Then, by Corollary 2.3., $T_{F \xi_{k}} \in \mathscr{M}_{p} S_{k}$. We obtain

$$
0=\sum_{m \in \mathbb{Z}_{+}^{n}}\left\langle T T_{F \zeta_{k}} e_{m}, e_{m}\right\rangle=\int_{\mathbb{R}_{+}^{n}} G 1_{[0,2 b]} \tilde{F} \mathrm{~d} \mu
$$

Since $\tilde{F} \in L_{\infty}(\mathrm{d} \mu)$ was arbitrary we have $G 1_{0, \lambda b]}=0 \mu$-a.e. Then, in view of (a), $\left\langle T e_{m+k}, e_{m}\right\rangle=\alpha_{\mathrm{m}}=0$ for all m. This implies $\psi=0$ and the Hahn-Banach separation theorem proves Theorem 2.6.
Lemma 2.1. implies
2.7. Corollary. Let μ satisfy (\#). Put

$$
V=\left\{f \in L_{\infty}: f \text { an } L_{\infty}(\mathrm{d} \mu) \text {-valued trigonometric polynomial }\right\} .
$$

(i) Then $\left\{T_{f}: f \in V, T_{f} \in \mathscr{K}\right\}$ is dense in \mathscr{K} with respect to the operator norm.
(ii) For any $p \geq 1$ the set $\left\{T_{f}: f \in V, T_{f} \in \mathscr{S}_{p}\right\}$ is dense in \mathscr{S}_{p} with respect to γ_{p}.

Recall that, for $\mu=$ the Dirac measure at $(1, \ldots, 1),\left\{T_{f}: T_{f} \in \mathscr{K}\right\}=\{0\}$.However, the "richness" of $\left\{T_{f}: T_{f} \in \mathscr{K}\right\}$ does not depend on the topology of $\mathrm{H}_{2}(\mu)$.
2.8. Corollary. Let μ be any positive bounded Borel measure on \mathbb{R}_{+}^{n} with $\operatorname{supp} \mu \cap$ interior of $\mathbb{R}_{+}^{n} \neq \emptyset$. Then there is a positive bounded Borel measure μ_{0} on \mathbb{R}_{+}^{n} satisfying condition (\#) such that $H_{2}(\mu)=H_{2}\left(\mu_{0}\right)$ algebraically and topologically.

Remark. For μ_{0} the density results 2.6. and 2.7. hold.

Proof of Corollary 2.8. Fix $b=\left(b_{1}, \ldots, b_{n}\right) \in \operatorname{supp} \mu \cap$ interior of \mathbb{R}_{+}^{n}. Let $\mathrm{d} \mu_{1}=1_{[0, b / 2]} \mathrm{d} r_{1} \ldots \mathrm{~d} r_{n}$ and put $\mu_{0}=\mu+\mu_{1}$. In view of Lemma 2.5., μ_{0} satisfies (\#). Let

$$
B=\left\{\left(t_{1}, \ldots, t_{n}\right): \frac{1}{2} b_{j}<t_{j}, j=1, \ldots, n\right\}
$$

Then $\mu(B)>0$ since $b \in B \cap \operatorname{supp} \mu$. For any polynomial h we obtain, using the maximum principle,

$$
\begin{aligned}
\int_{\mathbb{R}_{+}^{n}} \int_{\mathbb{T}^{n}}|h|^{2} \mathrm{~d} \varphi \mathrm{~d} \mu & \leq \int_{\mathbb{R}_{+}^{n}} \int_{\mathbb{T}^{n}}|h|^{2} \mathrm{~d} \varphi \mathrm{~d} \mu_{0} \\
& \leq \int_{\mathbb{R}_{+}^{n}} \int_{\mathbb{T}^{n}}|h|^{2} \mathrm{~d} \varphi \mathrm{~d} \mu+\mu_{1}\left(\left[0, \frac{1}{2} b\right]\right)\left(\int_{\mathbb{T}^{n}}\left|h\left(\frac{1}{2} b \cdot \exp (i \varphi)\right)\right|^{2} \mathrm{~d} \varphi\right) \\
& \leq \int_{\mathbb{R}_{+}^{n}} \int_{\mathbb{T}^{n}}|h|^{2} \mathrm{~d} \varphi \mathrm{~d} \mu+\frac{\mu_{1}\left(\left[0, \frac{1}{2} b\right]\right)}{\mu(B)} \int_{\mathbb{R}_{+}^{n}} \int_{\mathbb{T}^{n}}|h|^{2} \mathrm{~d} f \mathrm{~d} \mu .
\end{aligned}
$$

Hence the L_{2}-norms with respect to $\mathrm{d} \varphi \otimes \mathrm{d} \mu$ and $\mathrm{d} \varphi \otimes \mathrm{d} \mu_{0}$ are equivalent.

3. A non-density result

While $\left\{T_{f}: f \in L_{\infty}, T_{f} \in \mathscr{K}\right\}$ is often quite large the set $\left\{T_{f}: f \in L_{\infty}\right\}$ is small in comparison with \mathscr{L}.

For a function h on \mathbb{C}^{n} and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{T}^{n}$ put $h_{\lambda}\left(z_{1}, \ldots, z_{n}\right)=h\left(\lambda_{1} z_{1}, \ldots, \lambda_{n} z_{n}\right)$. For $T \in \mathscr{L}$ let T_{λ} be the operator with $T_{\lambda} h=\left(T h_{\lambda}\right)_{\lambda}, h \in H_{2}(\mu)$. Using the fact that $\mathrm{d} \varphi$ is a Haar measure we conclude, for $f \in L_{\infty}$,

$$
\left(T_{f}\right)_{\lambda}=T_{\left(f_{\lambda}\right)}
$$

If $k \in \mathbb{Z}^{n}$ define $\int_{\mathbb{T}^{n}} T_{\exp (i \varphi)} \xi_{-k}(\exp (i \varphi)) \mathrm{d} \varphi$ by

$$
\left(\int_{\mathbb{T}^{n}} T_{\exp (i \varphi)} \xi_{-k}(\exp (i \varphi)) \mathrm{d} \varphi\right) h=\int_{\mathbb{T}^{n}}\left(T_{\exp (i \varphi)} h\right) \xi_{-k}(\exp (i \varphi)) \mathrm{d} \varphi, h \in H_{2}(\mu) .
$$

Clearly, $T_{\lambda} \in \mathscr{L}$ and $\int_{\sigma n} T_{\exp (i \varphi)} \xi_{-k}(\exp (i \varphi)) \mathrm{d} \varphi \in \mathscr{L}$. If $k=0$ (i.e. $\xi_{0}=1$) and $T=T_{\left\{\alpha_{m}\right\}}$ for some $\left\{\alpha_{m}\right\} \in l_{\infty}$ then $\int_{\mathbb{J}^{n}} T_{\exp (\imath \varphi)} \mathrm{d} \gamma=T$.
3.1. Lemma. Let $f \in L_{\infty}$ and $F(r)=\int_{\mathbb{T}^{n}} f(r \cdot \exp (i \varphi)) \xi_{-k}(\exp (i \varphi)) \mathrm{d} \varphi$. Then

$$
\int_{\mathbb{T}^{n}}\left(T_{f}\right)_{\exp (i \varphi)} \xi_{-k}(\exp (i \varphi)) \mathrm{d} \varphi=T_{F \xi_{k}} .
$$

Proof. Let $h, \tilde{h} \in H_{2}(\mu)$. With Fubini's theorem we obtain

$$
\begin{aligned}
& \left\langle\left(\int_{\mathbb{T}^{n}}\left(T_{f}\right)_{\exp (i \varphi)} \xi_{-k}(\exp (i \varphi)) \mathrm{d} \varphi\right) h, \tilde{h}\right\rangle \\
& =\int_{\mathbb{T}^{n}}\left\langle f h_{\exp (i \varphi)}, \tilde{e x p}_{\exp (-i \varphi)}\right\rangle \xi_{-k}(\exp (i \varphi)) \mathrm{d} \varphi \\
& =\int_{\mathbb{R}_{+}^{n}} \int_{\mathbb{T}^{n}} \int_{\mathbb{T}^{n}} f_{\exp (i \varphi)} \xi_{-k}(\exp (i \varphi)) h \overline{\tilde{h}} \mathrm{~d} \varphi \mathrm{~d} \psi \mathrm{~d} \mu \\
& =\int_{\mathbb{R}_{++}^{n}} \int_{\mathbb{T}^{n}}\left(\int_{\mathbb{T}^{n}} f\left(r \cdot \exp (i(\varphi+\psi)) \xi_{-k}(\exp (i \varphi)) \mathrm{d} \varphi\right) h(r \cdot \exp (i \psi)) \overline{\bar{h}(r \cdot \exp (i \psi))} \mathrm{d} \psi \mathrm{~d} \mu\right. \\
& =\int_{\mathbb{R}_{+}^{n}} \int_{\mathbb{T}^{n}} F(r) \xi_{k}(\exp (i \psi)) h(r \cdot \exp (i \psi)) \overline{h(r \cdot \exp (i \psi))} \mathrm{d} \psi \mathrm{~d} \mu=\left\langle T_{F \xi_{k}} h, \tilde{h}\right\rangle
\end{aligned}
$$

3.2. Definition. Let v be a positive bounded Borel measure on $\mathbb{R}_{+} . v$ satisfies condition (*) if

$$
\lim _{l \rightarrow \infty} \int_{\mathbb{R}_{+}}\left|\frac{\varrho^{2 l}}{\int_{\mathbb{R}_{+}} \varrho^{2 l} \mathrm{~d} v}-\frac{\varrho^{2 l+2}}{\int_{\mathbb{R}_{+}} \varrho^{2 l+2} \mathrm{~d} v}\right| \mathrm{d} v=0
$$

Similar conditions were treated in [4]. An elementary calculation shows that (*) holds if supp v is bounded (provided that $\operatorname{supp} v \neq\{0\}$). Moreover, $(*)$ holds, for example, if $\mathrm{d} v(\varrho)=\varrho \varepsilon^{-\varrho^{2} / 2} \mathrm{~d} \varrho$.

Let us return to the given measure μ on \mathbb{R}_{+}^{n}. We say that μ_{j} is a boundary measure of μ if $\mu_{j}(B)=\mu\left(\mathbb{R}_{+}^{j-1} \times B \times \mathbb{R}_{+}^{n-1}\right)$ for all Borel sets $B \subset \mathbb{R}_{+}$.
3.3. Theorem. Assume that μ has a boundary measure μ_{j} satisfying (*). Let $\alpha_{m}=(-1)^{m_{j}}, m=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}_{+}^{n}$.

Then $T_{\left\{\mathfrak{o m}_{m}\right\}} \neq$ closure of $\left\{T_{f}: f \in L_{\infty}\right\}$.
Proof. Assume $\left\|T_{\left\{\alpha_{m}\right\}}-T_{f}\right\| \leq 1 / 2$ for some $f \in L_{\infty}$. Put $F(r)=\int_{\mathbb{T}^{n}} f(r \cdot \exp (i \varphi)) \mathrm{d} \varphi$. Then $\left\langle T_{F} e_{m}, e_{m}\right\rangle=\left(\int F r^{2 m} \mathrm{~d} \mu\right)\left(\int r^{2 m} \mathrm{~d} \mu\right)^{-1}$ (Lemma 2.2.) and we obtain

$$
\begin{aligned}
\sup _{m}\left|\alpha_{m}-\frac{\int F r^{2 m} \mathrm{~d} \mu}{\int r^{2 m} \mathrm{~d} \mu}\right| & =\left\|T_{\left\{q_{m}\right\}}-T_{F}\right\| \\
& =\left\|T_{\left\{q_{m}\right\}}-\int_{\mathbb{T}^{n}}\left(T_{f}\right)_{\exp (i \varphi)} \mathrm{d} \varphi\right\| \\
& \leq\left\|T_{\left\{q_{m}\right\}}=T_{f}\right\| \leq \frac{1}{2}
\end{aligned}
$$

$$
\left|\frac{\int F r^{2 m(l)} \mathrm{d} \mu}{\int r^{2 m(l)} \mathrm{d} \mu}-\frac{\int F r^{2 m(l+1)} \mathrm{d} \mu}{\int r^{2 m(l+1)} \mathrm{d} \mu}\right| \leq\|F\|_{\infty} \int\left|\frac{\varrho^{2 l}}{\int \varrho^{2 l} \mathrm{~d} \mu_{j}}-\frac{\varrho^{2 l+2}}{\int \varrho^{2 l+2} \mathrm{~d} \mu_{j}}\right| \mathrm{d} \mu_{j} .
$$

In view of (*), it follows that

$$
2=\lim _{l \rightarrow \infty} \sup \left|\alpha_{m(l)}-\alpha_{m(l+1)}\right| \leq 1,
$$

a contradiction.
In [2] it was shown that, in the case of the Bergman space for $n=1$ and the Fock space, even the C^{*}-algebra generated by $\left\{T_{f}: f \in L_{\infty}\right\}$ is not dense in \mathscr{L}.

4. The space $\mathscr{M}_{\infty} S_{k}$

Here we deal with $\mathscr{M}_{\infty}=\left\{T_{\left.\alpha_{m}\right\}}:\left\{\alpha_{n}\right\} \in l_{\infty}\right\}$. We have seen that $\mathscr{M}_{\infty} \notin$ closure of $\left\{T_{f}: \in L_{\infty}\right\}$ in general. Note that $T \in \operatorname{span}\left(\bigcup_{k \in \mathbb{Z}^{n}} M_{\infty} S_{k}\right)$ if and only if there is $j \in \mathbb{Z}_{+}$such that $\left\langle T e_{l}, e_{m}\right\rangle=0$ whenever $|l-m|>j$. For $T \in \mathscr{L}$ let

$$
\sigma_{j} T=\sum_{|k|<j} \frac{j-|k|}{j} \int_{\mathbb{T}^{n}} T_{\exp (i \varphi)} \xi_{-k}(\exp (i \varphi)) \mathrm{d} \varphi .
$$

Then $\sigma_{j} T \in \operatorname{span}\left(\bigcup_{k \in \mathbb{Z}^{n}} \mathscr{M}_{\infty} S_{k}\right)$. Moreover, $\left(\sigma_{j} T_{f}\right)=T_{\sigma_{j} f}$ where

$$
\sigma_{j} f=\sum_{|k|<j} \frac{j-|k|}{j} \int_{\mathbb{T}^{n}} f_{\exp (i \varphi)} \xi_{-k}(\exp (i \varphi)) \mathrm{d} \varphi .
$$

It is easily seen that $\sigma_{j} f$ is an $L_{\infty}(\mathrm{d} \mu)$-valued trigonometric polynomial. (See Lemma 3.1.)

Let $q: \mathscr{L} \rightarrow \mathscr{L} / \mathscr{K}$ be the quotient map.
4.1. Theorem. The following are equivalent
(a) $T \in$ closure of $\operatorname{span}\left(\bigcup_{k \in \mathbb{Z}^{n}} \mathscr{M}_{\infty} S_{k}\right)$.
(b) The map $\left\{\begin{array}{l}\mathbb{T}^{n} \rightarrow \mathscr{L} \\ \lambda \mapsto T_{\lambda}\end{array}\right.$ is continuous
(c) The map $\left\{\begin{aligned} \mathbb{T}^{n} & \rightarrow \mathscr{L} / \mathscr{K} \\ \lambda & \mapsto q T_{\lambda}\end{aligned}\right.$ is continuous
(d) $\lim _{j \rightarrow \infty}\left\|q T-q \sigma_{j} T\right\|=0$
(e) $\lim _{j \rightarrow \infty}\left\|T-\sigma_{j} T\right\|=0$

Proof. $(a) \Rightarrow(b)$ follows from the fact that the map

$$
\lambda \mapsto\left(T_{\left\{\gamma_{m}\right.} S_{k}\right)_{\lambda}=\left(T_{\left\{\gamma_{m}\right.} S_{k}\right) \lambda^{k}
$$

is continuous.
$(b) \Rightarrow(c),(e) \Rightarrow(a)$ and $(e) \Rightarrow(d)$ are clear. $(d) \Rightarrow(a)$ follows from the fact that $\sigma_{j} T \in \operatorname{span}\left(\bigcup_{k \in \mathbb{Z}^{n}} \mathscr{M}_{\infty} S_{k}\right)$ and $\mathscr{K} \subset$ closure of $\operatorname{span}\left(\bigcup_{k \in \mathbb{Z}^{n}} \mathscr{M}_{\infty} S_{k}\right)$.
(c) $\Rightarrow(a)$: By assumption the map $\lambda \mapsto q T_{\lambda}$ is Bochner-integrable with respect to $\mathrm{d} \varphi$. In particular, $\left\{q T_{\lambda}: \lambda \in \mathbb{T}^{n}\right\}$ is separable. Moreover, \mathscr{K} is separable in view of

Lemma 2.1.(i). We conclude that $\left\{T_{\lambda}: \lambda \in \mathbb{T}^{n}\right\}$ is separable and, hence, $\lambda \mapsto T_{\lambda}$ is Bochner-integrable. This implies

$$
\sigma_{j} q T:=\sum_{|k|<j} \frac{j-|k|}{j} \int_{\mathbb{T}^{n}} q T_{\exp (i \varphi)} \xi_{-k}(\exp (i \varphi)) \mathrm{d} \varphi=q\left(\sigma_{j} T\right) .
$$

For any $\psi \in(\mathscr{L} / \mathscr{K})^{*}, \psi\left(q T_{\lambda}\right)$ is continuous in λ. We obtain

$$
\sum_{|k|<j} \frac{j-|k|}{j} \int_{\mathbb{T}^{n}} \psi\left(q T_{\exp (i \varphi)}\right) \xi_{-k}(\exp (i \varphi)) \mathrm{d} \varphi=\psi\left(\sigma_{j} q T\right)=\psi\left(q\left(\sigma_{j} T\right)\right) .
$$

and $\lim _{j \rightarrow \infty} \psi(q T)=\psi(q T) .\left(\psi\left(\sigma_{j} q T\right)\right.$ are the "usual" Cesaro means of $\psi\left(q T_{\lambda}\right)$ at $\lambda=(1, \ldots, 1)$, se [3]).

By Mazur's theorem ([1]), $\lim _{l \rightarrow \infty}\left\|q T_{l}-q T\right\|=0$ for suitable convex combinations T_{l} of the $\sigma_{j} T$. Since $T_{l} \in \operatorname{span}\left(\bigcup_{k \in \mathbb{Z}^{n}} \mathscr{M}_{\infty} S_{k}\right)$ this yields $q T \in q($ closure of $\left.\operatorname{span}\left(\bigcup_{k \in \mathbb{Z}^{n}} \mathscr{M}_{\infty} S_{k}\right)\right)$. Since $\mathscr{K} \subset$ closure of $\operatorname{span}\left(\bigcup_{k \in \mathbb{Z}^{n}} \mathscr{M}_{\infty} S_{k}\right)$ we derive (a).
$(a) \Rightarrow(e)$: Find $T_{l} \in \operatorname{span}\left(\bigcup_{k \in \mathbb{Z}^{n}} M_{\infty} S_{k}\right)$ with $\lim _{l \rightarrow \infty}\left\|T-T_{l}\right\|=0$. We easily obtain $\left\|\sigma_{j}\left(T-T_{l}\right)\right\| \leq\left\|T-T_{l}\right\|$ for each j and l. Moreover, since T_{l} is a finite sum of operators of the form $T_{\left\{q_{m}\right\}} S_{k}$, we have $\lim _{j \rightarrow \infty}\left\|T_{l}-\sigma_{j} T_{l}\right\|=0$ for each l. Fix $\varepsilon>0, l$ and j_{0} with

$$
\left\|T-T_{l}\right\| \leq \frac{\varepsilon}{3} \text { and }\left\|\sigma_{j} T_{l}-T_{l}\right\| \leq \frac{\varepsilon}{3} \text { for } j \geq j_{0} .
$$

Hence

$$
\left\|T-\sigma_{j} T\right\| \leq\left\|T-T_{l}\right\|+\left\|T_{l}-\sigma_{j} T_{l}\right\|+\left\|\sigma_{j} T_{l}-\sigma_{j} T\right\| \leq \varepsilon
$$

and $\lim _{j \rightarrow \infty}\left\|T-\sigma_{j} T\right\|=0$.
4.2. Corollary. Let $f \in L_{\infty}$. Then the following are equivalent
(a) $T_{f} \in$ closure of $\operatorname{span}\left(\bigcup_{k \in \mathbb{Z}^{n}} M_{\infty} S_{k}\right)$.
(b) The map $\left\{\begin{array}{l}\mathbb{T}^{n} \rightarrow \mathscr{L} \\ \lambda \mapsto T_{f_{2}}\end{array}\right.$ is continuous
(c) The map $\left\{\begin{array}{l}\mathbb{T}^{n} \rightarrow \mathscr{L} / \mathscr{K} \\ \lambda \mapsto q T_{f_{\lambda}}\end{array}\right.$ is continuous
(d) $\lim _{j \rightarrow \infty}\left\|q T_{f}-q T_{\sigma_{j} f}\right\|=0$
(e) $\lim _{j \rightarrow \infty}\left\|T_{f}-T_{\sigma_{j} f}\right\|=0$

Toeplitz operators satisfying Corollary 4.2. were studied in [4].

References

[1] Conway, J. B., A course in functional analysis, Springer, Berlin-Heidelberg-New York-Tokyo, 1985.
[2] Englis, M., Density of algebras generated by Toeplitz operators on Bergman spaces, Ark. Mat. 30, No. 2, 227 - 243 (1992).
[3] Hoffman, K., Banach spaces of analytic functions, Prentice Hall, Englewood Cliffs, 1962.
[4] Lusky, W., Toeplitz operators on generalized Bergman-Hardy spaces, submitted for publication.
[5] Zhu, K., Operator theory in function spaces, Marcel Dekker Inc., New York, 1990.

[^0]: *) Fachbereich 17, Universität-Gesamthochschule, Warburger Strasse 100, D-33098 Paderborn, Germany

