
Acta Universitatis Carolinae. Mathematica et Physica

Wolfgang Lusky
On approximation by Toeplitz operators

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 39 (1998), No. 1-2, 137--146

Persistent URL: http://dml.cz/dmlcz/702051

Terms of use:
© Univerzita Karlova v Praze, 1998

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/702051
http://project.dml.cz


1998 ACTA UNTVERSITATIS CAROLINAE-MATHEMATICA ET PHYSICA VOL. 39, NO. 1-2 

On Approximation by Toeplitz Operators 

WOLFGANG LUSKY 

Paderborn*) 

Received 15. March 1998 

We show that the set of compact Toeplitz operators is dense in the space of all compact operators 
for many generalized Bergman-Hardy spaces. Moreover the set of p-Schatten class Toeplitz operators 
is dense in the p-Schatten class with respect to the p-Schatten class norm for p > 1. 

1. Introduction 

We study the richness of classes of compact Toeplitz operators on generalized 
Bergman-Hardy spaces. 

Let Tn = {(zb ..., zn) e Cn: \zk\ = 1, k = 1,..., n} and let dcp be the normalized 
Haar measure on Tn. We fix a bounded positive Borel measure \i on R+ with 
supp \x n (interior of R+) =+- 0 and define, for / , g : Cn -> C, 

<f g> = f f f(r ' exp (iq>)) g(r • exp (icp)) dcp dfi(r) , || / 1 | 2 = V < / / > . 

(Here, r • exp {icp) = (rt e
1<pi,..., rn e

i(pn) e Cn.) Let L2 = L2{dcp ® d/x) be the cor­
responding Hilbert space (of the classes of measurable functions / with ||/|| < oo). 
We want to consider only such ju where all polynomials on Cn are elements of 
L2 (which is the case, for example, if \i has compact support.) Then put 

H2{\x) = closure of {p: Cn -> C : p a polynomial} cz L2 

and let P: L2 -> H2{fi) be the orthogonal projection. Now, for / e L^ = 
L^dcp ® d/i), we define the Toeplitz operator 

*) Fachbereich 17, Universität-Gesamthochschule, Warburger Strasse 100, D-33098 Paderborn, 
Germany 

137 



which, of course, is an element of 

J§? := {T: H2(fi) -• H2(JJ) : T linear and bounded}. 

Let X = {Te 5£ : T compact}. 
It was shown in [2] that, for the measures 

d/i(r) = l[0)i]»(r) ?\ ••• r„ drx... drn (the Bergman space) 
and 

djU = rx e~ri/2... rn e
_r^2 &rx... drn (the Fock space) 

the compact Toeplitz operators are dense in X with respect to the operator norm. 
(In [2] even more general domains flc C" than polydiscs were treated.) We shall 
give conditions on \i which show that this result remains true in our setting for 
a large class of measures. Actually we show that there are more specific density 
theorems for certain subclasses of Toeplitz operators. In particular, {Tf : f e V, 
Tf compact} is dense in X where V consists of L00(d/i)-valued trigonometric 
polynomials. Here / is called L00(dju)-valued trigonometric polynomial if / has the 
form / = Y.\k\<jF£k for some jeZ+ where Fk(zu..., zn) = Fk(\zx\,..., \zn\) and 
Fk e LQO, i-e- where Fk depends only on the radii (called a radial function), and 

«• гЧӣľ-(ӣУ 
if k = (kb..., K)eZn, zx,..., z neC\{0}. \k\ means \kx\ + ... + |kn| (Corollary 
2.7.). Put £k(zu ..., zn) = 0 if Zj, = 0 for some/ 

On the other hand, one needs an additional condition on \i to have sufficiently 
many compact Toeplitz operators. If \i is the Dirac measure at (1,. . . , 1) e Rn

+ then 
H2(fi) is the classical Hardy space on Tn. Here it is known that {T}: f eL^, 
Tf compact} = {0}, so no such density theorem can hold. However, it is always 
possible to go over to an equivalent L2-norm on H2(JJ) defined by a different 
measure /i0 where {Tf:fe L^, Tf compact} is dense in X (Corollary 2.8.). 

Moreover, we deal with ^p = {Te X :T is of p-Schatten class} for p > 1, i.e. 
T e £fv if there are orthonormal systems {$„}, {/rj in H2(JJ), and Xm e C such that 

Th = Y, Am(h,gm)hm, heH2{ii), and yp(T) = (YjAJf > < co. 
meZ + 

We show that {Tf : f e V, 7} e ^p) is dense in Sfv with respect to yp. 
While {Tf:fe L^, Tf compact} is very often large the set {7^: / e L^} is small 

in comparison with S£. This is discussed in section 3. 
Our considerations concentrate on such operators T e ££ which can be approxi­

mated (with respect to the operator norm) by finite combinations of shifts and 
diagonal operators. In the final section 4 we give characterizations of such 
operators. 
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2. Density results 

For m = (mi,..., mn) e Z+ and r • exp (icp) = (rY e
i<pl,..., rn t

i(pn) e Cn put 

Here f* = rmi... rm". Then {^}meZ+ is an orthonormal basis of H-hl*)- For 
fc = (fcb ..., fcn) e Zn and h = ZmGZ"+jSmem e H2(p) put 

S^ = Z j5m-^m 
m >max(fc,0) 

(m > max (fc, 0) means mx > max (fcl5 0),..., mn > max (fc„, 0)). 
Now we introduce the main objects of study. At first define 

T{«fc} ( Z Pnfim ) = Z amAi^m • 
\meZ+ / meZ + 

For p > 1 put 

J?p= {^'.{ctjfelp} and ^#0 = { ^ j : {<Xm}ec0}. 

Let ^pS f c = {7Sfc: T e Jiv\ 
2.1. Lemma. We have 
(i) closure of span ({Jkez^oSk) = ^ (closure with respect to the operator 

norm), and 
(ii) yp-closure of span (\Jkezn^oSk) = ^p-
Proof, (i) follows from the fact that the finite rank operators are dense in X'. 

YpSk<=<?pi 
and p > 1, and Sf* = S£ under the duality 
To prove (ii) note that JtvSk a Sfv for each fc. Moreover Sf* = Sfq, if p~l + q 1 = 1 

<S,Ty= £ <TSem,emy ([5]). 
meZ + 

So, let TeSfq if p > 1 or Te S£ if p = 1 such that <5,T> = 0 for every 
1 m' = / 

S G ^ p S k , fc e Zn. Fix /, m e Z+ and put fc = / - m, aw, = <! L . . We p + r [0 otherwise 

obtain, with S = T^S^, 

0 = <S, T> = (Tem+k, emy = <Jeh emy . 

Hence T = 0. The Hahn-Banach separation theorem completes the proof. ~~ 

As a direct consequence of the definitions using the orthogonality of the ^ we 
obtain (see [4]) 

2.2. Lemma. Consider fc e Zn, /, m e Z+ and a radial function F e L^. Then 
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jFr2m-k dџ 
l = m 

(TF(keb em) = j y p M ) 7 p m + i r d ^ 
*• 0 otherwise 

This means TF(k = T{<-^_ f a o;w ._*<.,<»)-* and hence 

TF(k e JipSk if and only if __ 
m > max (k, 0) 

THk e J?0Sk if and only if lim 

jFr2m-fc dß 

y/ţr^dџjr^-^dџ 

ţFr2m-к d џ 

< oo, 

= 0. 
• VJr2m d^ Jr2"-2* d/i 

2.3. Corollary. Lei1 b e supp /., A e ]0,1[, fc e Z" and F e L00(d/»). r/.en, for any 
P^ lTFll0^(keJtpSk. 

(Here, with b = (bu ..., b„), 

[0, lb] = {(a,..., c„): 0 < 9 < Aft,, j = 1,..., n}). 

Proof. Put 

B = \(tu ..., („): I- + -J b,- < f„ j = 1,..., nj. 

Since beB n suppju we have n(B) > 0. Hence 

ÍI^o, xь_r Jlm-k dџ 

v

/Jr 2 md/.Jr 2 m- 2 f cd/. 

Since 0 < A(| + I)" 1 < 1 we obtain 

tfя) П j Л 

|2m-fc| 

I 
m>max(/c,0) 

Jirl[o,^]r
2m-,Id/z 

y j r^d/ i j r 2 "- 2 ^/ ! 
< 0 0 . D 

2.4. Definition. \i satisfies condition ( # ) if there are non-empty sets 
Ii,..., In c= U+ \ {0} such that 72> •••- -*« are bounded and infinite and satisfy the 
following: 
(i) A x... xln cz supp/I, 

(ii) for each b e Ix x ... x /„ there is £ e ]0,1[ such that 
cardinality of ([0,1 — e] • b n supp /i) = oo. 

To produce examples we note the straightforward 

2.5. Lemma. 7/" supp \i contains an interior point with respect to Rn then 
\i satisfies condition ( #). 

In particular, the measure of the Bergman space on polydiscs and the measure of 
the Fock space (see introduction) satisfy (# ) . However we also find easily atomic 
measures satisfying (# ) . 
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Now we come to the main result of this section. For b = (b1?..., bn) e (C\ {0}) 
and m = (mu ..., mn) e Zn put bm = h?1... b™n. 

2.6. Theorem. Assume that \i satisfies condition ( #) . Let k e Zn. 
(i) Then, 

{T^'.FeL^dfi), lim (THkem_k, em} = 0} 
m-»-oo 

is dense in Jt0Sk with respect to the operator norm, 
(ii) For any p > 1, 

{THk: F e L^d/i), Z K5&^-ib O l p < oo} 
m^max(/c,0) 

w dense w Sfv with respect to yp. 

Proof. We proceed in two steps. At first we prove the following, 
(a) Let b e Ix x ... x /„ and 0 < e < 1 as in condition (# ) . Consider {o^} e /«, and 
put 

«2m + fc 

m2>max(-fc,0) V J r d ^ J r " ^ 

Then, we claim, for any X e ]0,1[, the series defining G is uniformly convergent 
on [0, Xb\ Moreover, if Gl^p^jq = 0 ju-a.e. then am = 0 for all m. 

Indeed, with B = {(tu ..., tn): (1/2 + A/2) b, < *,•,; = 1,..., n) we obtain 

y,2m + /c 

^/fr2"1 d|i fr2m+2fc d/x 
l[o,4 r) ^ l l T i 

A \|2m+fc| 1 

5 + 5/ ^ ) " 

Since A(l/2 + A/2)"1 < 1 and /i(B) > 0 (in view of b e supp / i n B ) this implies 
that the series defining G is uniformly convergent. In particular G is continuous on 
[0, b\_. Assume that Gl[0(1_e)b] = 0/x-a.e. Use condition ( # ) to find b(m)e 
[0, (1 — e)[ • b n supp ju with b(m) =i= fe(m') if m 4= m\ Consider open <5-balls 
Us(b(m)) centered at b(m) and take into account fi(U3(b(m)) > 0. Since 
Gl[0,(i-e)fc] = 0/z-a.e. find % m ) e l / ^ ( m ) ) with G(b(S, m)) = 0. We have 
l i m ^ o ^ , m) = b(m). Hence continuity yields G(fe(m)) = 0 for all m. 

Fix Qm with 0 < Qm <> 1 — 8, b(m) = Qmb and gm 4= gm̂  if m 4= m'. Put 

U2m + k 

Then g is a uniformly converging power series for t e [0,1 + e]. Since g{Q„) = 0 
for all m we obtain 

ypm+k 

~ = 0 for all j e Z + . 
|2m+fc|=; Vfr 2 " , d^r 2 " , + 2 *d / i 
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For fixed j this is true for infinitely many b2eI2,..., bneIn, where b = 
(bub2,..., bn). Using the identity theorem successively in each component for 
bn, bn_h ..., b2 we obttain eventually am = 0 for all m with \2m + k\ = j . 

(b) Now we prove the theorem. Recall that Sf* can be identified with Sfv if p > 1 
and p _ 1 + q'1 = 1, and Sf? = Sfx (see [5]). Fix p > 1 or p = 0 and consider 
\// e (JtvSk)* such that i//(THk) = 0 for every F e Lj&p) with THk e JtvSk. By 
Hahn-Banach we find TeSf* \ip> 1 and Te X* if p = 0 with T|^p5/c = i/L 
Using the duality Sf* _± ^ , &? _i S£ and X* _i Sfx, we obtain with Lemma 2.2. 

0 = I <TTnkem, em} = J ' / J ^ ^ 3 k A (Tem+h em} . 
meZ\ m_n_x(-k,0) V j>2m dfl jV2"1*2* d/l 

Put ccm = <Tem+fc, em>. Then {o^}e /«,. Define 

G(r) z «» 
„2m + fe 

m>m£(-Jfc,0) v/J
r2"dA*f,A" + 2*d/i' 

which, according to (a), is well-defined on [0,fo[ for all fee/j x. . . x /„. Take 
PeLjdn) arbitrarily and put, for some Ae]0 , l [ , F = flp,^]- Then, by 
Corollary 2.3., 7>& e ^pS f c . We obtain 

0 = _ <TTFskem,em} = f Gl[(U6]j? d/i. 

Since .F e L00(d/i) was arbitrary we have Gl0,^] = 0 /x-a.e. Then, in view of (a), 
(Tem+hemy = am = 0 for all m. This implies ^ = 0 and the Hahn-Banach 
separation theorem proves Theorem 2.6. G 

Lemma 2.1. implies 

2.7. Corollary. Let \i satisfy (#). Put 

V = {f e Loo: / an LjAp)-valued trigonometric polynomial}. 

(i) Then \Tf:fe V, Tfe X} is dense in X with respect to the operator norm, 
(ii) For any p > 1 the set {1}: f e V, 7} e Sfv} is dense in Sfv with respect to yv. 

Recall that, for \i = the Dirac measure at (1,.. . , 1), {Tf : Tf e X} = {0}.However, 
the "richness" of [Tf : Tf e X} does not depend on the topology of H2(p). 

2.8. Corollary. Let \i be any positive bounded Borel measure on W+ with 
supp p n interior of W+ + 0. Then there is a positive bounded Borel measure 
p0 on W+ satisfying condition (#) such that H2(p) = H2(PQ) algebraically and 
topologically. 

Remark. For p0 the density results 2.6. and 2.7. hold. 
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Proof of Corollary 2.8. Fix b = (bu ..., bn) e supp /x n interior of R+. Let 
d/ix = l[o,_./2] dri... drn and put /Jo = A* + /*i. In view of Lemma 2.5., fi0 satisfies 
(# ) . Let' 

B = \(tu..., tn):-bj< tpj= l,..., ni. 

Then fi(B) > 0 since be B n supp \i. For any polynomial h we obtain, using the 
maximum principle, 

f f \h\2dcpdn< f f IfcpdpdAio 
JR+JT" JR^JT" 

< f f |fc|2d<p dn + nx([0,ift]) ( f |/tg_ • exp (icp))\2dip) 
JR"+JT" \JT" / 

< f f \h?d<pd, + ̂ Mc nh\
2dfd». 

JR" + JT" PyP) J R + J T " 

Hence the L2-norms with respect to dcp (x) d/z and dcp ® djU0 are equivalent. • 

3. A non-density result 

While [Tf: f e L^ , Tf e X} is often quite large the set \Tf : f e L^} is small in 
comparison with 5£. 

For a function h on Cn and A -= (Al5...,Xn)e Jn put /zA(zl5..., zn) = /z^Zj , . . . , Xnzn). 
For T e J? let TA be the operator with TA/z = (Thx)h h e H2(fi). Using the fact that 
dcp is a Haar measure we conclude, for / e L^ , 

(T/)- = -w,. 

IfkeZ" define JT„Texp ( ,^_k (exp (i<p)) d<p by 

( f Texp{i<l>)£_k(exp (i<p)) dcp J h = f (Texp{i(p)h) ^ ( e x p (icp)) dcp, h e H2(n). 

Clearly, Tx e <£ and JT«rexPM<MexP (i(P)) d(P e &• I f fe = ° (i-e- & = 1) and 
T = TM for some {c^} e /«, then J T - " ^ ^ ) dy = T. 

3.1. Lemma. Let f e L^ and F(r) = jj-f(r • exp (icp)) ^ ( e x p (icp)) dcp. Then 

f (5})exPM <^-t(exp (icp)) dcp = TFik. 
JT" 

Proof. Let h,h~e H2(n). With Fubini's theorem we obtain 

143 



( f (Tf\vfr)£_fc(
exP (Up))dcpj h, /T 

= f <fK*P(i<p)> ltexP(-»> £-*(exP (iq>)) d(P 

= f f f fxp(I>)£-*(exp(i<p))Md<j£>di/'d/< 

= f f ( f f(r' exP ( # + "A)) M e x P (»>)) d(P) Kr' exP (»V0) %' exP W ) # dA-

= f f F(r) &(exP («y)) li(r • exP (»*)) % • exP W ) # d» = < £«A *> • n 
JR+JT" 

3.2. Definition. Let v be a positive bounded Borel measure on R+. v satisfies 
condition (*) if 

lim I w 

„21+2 

dv = 0. [dv JR+^2/+2dv| 

Similar conditions were treated in [4]. An elementary calculation shows that (*) 
holds if supp v is bounded (provided that supp v 4= {0}). Moreover, (*) holds, for 
example, if dv(g) = Q£~e2/2 dg. 

Let us return to the given measure /i on R"+. We say that /JLJ is a boundary 
measure of \i if ^(B) = ^(IRV1 x 5 x R"-1) for all Borel sets B cz R+. 

3.3. Theorem. Assume that \i has a boundary measure \i}- satisfying (*). Let 
am = ( - \)m\ m = (ml5..., mn) e Z\. 

Then T{(Xm] £ closure of{Tf:fe L^}. 

Proof. Assume || T{oCm] — Tf\\ < 1/2 for some / e L^. Put F(r) = \jnf{r • exp (icp)) dcp. 
Then (TFem, em} = (\Fr2m dfi) (jr2m d/x)"1 (Lemma 2.2.) and we obtain 

sup 0Cm -
\Fr2m dfi 

J^d/í = 1 l-M-Гғll 

= ты - f (Tf 
Jтn 

<l \TЫ=TЛ-

|d<p 

Put m(l) = (0,..., 0, /, 0,..., 0). Then we have 

У - l 

fҒr2m'')d/. JFr2mC+1>d/i 

fŕWdџ ~ Jr2m<'+1>d^ 
< IIFII íl Л\ + 2 

J^d/i, íe2'+2d^. 
dџj. 
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In view of (*), it follows that 

2 = lim sup |am(/) - am(/+1)| < 1, 
/ - • o o 

a contradiction. • 

In [2] it was shown that, in the case of the Bergman space for n = 1 and the Fock 
space, even the C*-algebra generated by {Tf\fe L^} is not dense in JSf. 

4. The space MJ^k 

Here we deal with M^ = {T^}: {OOM}G /OO}. We have seen that ^oo 4= closure 
of {Tj: e Loo} in general. Note that T e spa^lJ/cez^ooSfc) if and only if there is 
j e Z+ such that (Tei, em} = 0 whenever \l — m\ > j . For T G J£? let 

o>r= S ^ r ^ f Texp(,^_fc(exp(i»)d(p. 
|/c|<7 I J j " 

Then ^ T e s p a n ^ ^ ^ ^ S * ) . Moreover, (<TjTf) = Ta.f where 

ajf= L ^ — f /exP w M e x p (i<p)) d<p . 
1*1 <1 J JT" 

It is easily seen that cj is an L00(d/i)-valued trigonometric polynomial. (See 
Lemma 3.1.) 

Let q : j£? -> JSf/jT be the quotient map. 

4.1. Theorem. T/ie following are equivalent 
(a) T e closure of s pan^^n^^S^ ) . 

(b) The map < is continuous 

nn -> jsf/x . 
(c) The map < is continuous 

I A i-> qT^ 
(d) KmH„\\qT - qasT\\ = 0 
(e) l i m ^ H T - ^ T I I = 0 

Proof, (a) => (b) follows from the fact that the map 

^ ^ {T{«nfik)x = {Tivmfik) A* 
is continuous. 

(b) => (c), (e) => (a) and (e) => (d) are clear, (d) => (a) follows from the fact that 
(7jT E sprni(\JkeZn J^^S/,) and JT cz closure of span(\Jkez»^<x>Skl-

(c) => (a): By assumption the map A\-+ qTx is Bochner-integrable with respect to 
d<p. In particular, {qTx : X E Jn} is separable. Moreover, Jf is separable in view of 
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Lemma 2.1.(i). We conclude that {Tx : X e Tn} is separable and, hence, X i-> Tx is 
Bochner-integrable. This implies 

°/lT:= I j - ^ f qZMi(p)Z-k(exp(i(p))d(p = q(cjT). 
|fc|<1 J JT« 

For any \j/ e (J5f/Jf )*, ij/(qTx) is continuous in L We obtain 

I — f ^T e x p W )^,(exp(^))d(p = ^ r ) = <K«far)). 
I*l<1 ^ JT* 

and l im^oo^T) = 1%^)- (&(°flJ) a r e t h e "usual" Cesaro means of \jj(qTx) at 
A = (l, . . . , l), se[3]). 

By Mazur's theorem ([1]), lim/^0olk'-7 — 0-HI = 0 f o r suitable convex combi­
nations 7J of the o-;T. Since 7] e span(UkeZ»^oo-Sfc) this yields qT e ^(closure of 
span((JfceZn^oo^)). Since X c closure of span(Ufc6z»^ooSfc) we derive (a). 

(0) => (e): Find 7; e span((J fceZw^00S j t) with lim^oo IIT — 7J|| = 0. We easily obtain 
||(Tj(T — 7J)|| < | |T — 7J|| for each; and /. Moreover, since Tx is a finite sum of 
operators of the form T^Sk, we have X\vnHoATx — OjTx\ = 0 for each /. Fix 
g > 0, / and jo with 

|| T - 7I|| < I and \\a[Tx - 7J|| < | for j > j 0 . 

Hence 
| |T - (TjT\\ < \\T- 7JH + ||7; - o>7J|| + \\(TjTx - (TjT\\ < e 

andlim^oollT- asT\\ = 0 . D 

4.2. Corollary. Let f e L^. Then the following are equivalent 
(a) Tf e closure of span(JkeZnJt^Sk). 

(Ъ) The map • 
(jn 

u 
•-» se . 

m l S continuous 

(c) 

(d) 

The 

lim,. 

ÍT" 
map\x 
-.» WqЂ -

-> se/лr 
>-> vЂ 

- qT.jfW = 

is continuous 

: 0 

(e) J in^JI-}- -VII = 0 

Toeplitz operators satisfying Corollary 4.2. were studied in [4]. 
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