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RENDICONTIDEL CIRCOLO MATEMÄПCO DIPALERMO 
Serie II, Suppl. 43 (1996), pp. 103-110 

METRICS CONFORMALLY EQUIVALENT TO 
BOUNDED GEOMETRY 

Jiirgen Eichhorn, Jan Fricke, Alexander Lang 

1 Introduction 

As well known, each open manifold M n admits a metric g of bounded geometry of 
infinite order, i.e. |V l i? 5 | < Cz-, i = 0 , 1 , . . . , and r[nj(M,g) > 0. This has been proved 
by Greene in [6]. We used this existence theorem and the assumption of bounded 
geometry in many papers. For example, we established in [5] the existence of instantons 
for open 4-manifolds and SU(2)-bundles under certain conditions including bounded 
geometry of (Mn,g). On the other hand, many manifolds M n are naturally endowed 
with a given metric which does not have bounded geometry. Fortunately, instantons 
depend only on the conformal class of (M4,g). Hence, for applications in gauge theory 
and much more general, there arises the question which smooth metricsare conformally 
equivalent to a metric of bounded geometry. This is a rather delicate question. Already 
the local question for locally conformal flatness is settled by the Weyl tensor which is a 
highly nontrivial matter. It is very easy to endow R n with a metric g such that g is not 
conformally equivalent to a metric of bounded geometry. This follows from the fact 
that the curvature tensor has ' n ~ ' n • ( 2 —I-1) /-"* components but considering g = 

eu-g,u and its first and second derivatives produce only l + n + n ^ n

2

+ 1 * quantities. More 
carefully spoken, this task leads to the existence problem for the system R? =bounded, 
SJ9R9 —bounded and so on. Additionally, we have to estimate the injectivity radius. 
It seems to us that a general attack of this problem in one step is hopeless. Therefore 
it is adequate to start with simple handable classes of metrics and to enlarge this 
class step by step. In this paper, we prove the following theorem. Assume (Mn

yg) 

is open with finitely many collared ends e,-, i = 1, . . . ,m and <7|Ct. = dr2 + fi(r)2dajj.y 

f™ -T4--dr = oo. Then g is conformally equivalent to a metric g = eu • g satisfying the 
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conditions (Boo) and (I) below. In a second step we enlarge the class for g rapidly. 
Finally we derive some applications to gauge theory. As an independent result we proof 
in this paper that every bounded Riemannian vector bundle (E, h) —> (Mn,g), (Mn,g) 
with bounded geometry, admits a Riemannian connection V n of bounded geometry. 

2 The existence of bounded geometry for bundles 

Let (Mn,g) be open. Consider the following conditions (I) and (B^), 0 < k < oo, 

(I) Tinj(M) = mfxeM nn j (z) > 0, 
(Bk) \VlR\ <Ci,0<i< k, 

where r[n\(x) denotes the injectivity radius, R the curvature tensor and |-| the pointwise 
norm. We say (Mn,g) has bounded geometry of order k if it satisfies (I) and (Bk). 
Remark. (I) implies completeness of (M n , ^ ) .D 

Theorem 2.1 Let Mn be open. Then there exists a metric g on Mn satisfying (I) 
and (Boo). 

This is the main result of [6].D 
Let (E,h) —> (Mn,g) be a Riemannian vector bundle over (Mn,g), V a metric con
nection associated to h. (E, V) has bounded geometry of order k if it satisfies the 
condition 

(Bk(E,V)) \V{RE\ <Ci,0<i< k. 
To satisfy the condition (Bk(E, V)) is not a property determined by the fibre metric 
h of E alone. It really depends on the choice of the metric connetion V. We present 
a class of examples. Assume (Mn,g) with (I) and (B^), k > 0 and (E,h,Wi) where 
Vi is a metric connection satsfying (B0(E, Vi)) . If rj G - ^ ( G E ) ^S s u c n that dVlrj = 0 
and rj is unbounded then V 2 = Vi + rj is metric too but does not satisfy (B0(E, V2)) . 
This follows immediately from the equation 

(1) R^=RVl+^ti + [f,,rj]. 

The existenceof such an rj follows under certain conditions. Let X\,X2, — - —r oo be 
a sequence in M with dist(xi,Xj) > r-mj(M), i ^ j . If there exists a common 0 < 

e < Hnj(^-r) such that QE\ut(xi) has a parallel section £t- ^- 0 then we choose Ui G 
C£°(Ue/2(xi)) such that sup \dui ® &| > i and define 

xeue/2{xi) 

ф\ = í (dui ® Čť)(-0> * € UC/2{XІ) 
x elsewhere. 

We obtain dVlrj = 0 and R?2 unbounded. This construction goes through, in partic
ular, if Vi is flat. Hence we proved 

Proposit ion 2.2 If(Mn,g) satisfies (I) and (Bk) and (E,h,Vi) -> M is aflat Rie
mannian vector bundle then there exists a second metric connection V 2 such that 
(E,S72) does not satisfy (B0).O 

Corollary 2.3 The setting of (E,h) alone does not determine (Bk(E,V)) or not.O 
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Assume (Mn,g) with (I) and (B^). Fix a uniformly locally finite cover 
i l = {(Ua, u a , • • • ,un)}a °f M by normal charts of radius r < rjnj(M). Such covers 
exists according to Calabi, Cheeger. In the sequel we consider only such covers it. 
According to [1], [2], there exists an associated decomposition {i/>a}a of unity satisfying 
|Vl?/>a| < Ci, 0 < i < k + 2. Let (E, h) --> M be a Riemannian vector bundle of rank 
1V. E\ua is trivial, there are N orthonormal sections ei | C r , . . . ,ejvjCr : Ua -> 7r -1(Ua) 
which define trivializations $ a : 7r_1(Ua) —y Ua x EN and converse. The $ a are 
fibrewise isometric. The $ a define transition functions ^p®'1 : Ua C\ Up ^ O(N). 
The <I>a are far from being uniquely determined. Let O(N) be the sheaf defined by 
U -> L7°°(U, O(N)). Then the bundle ( £ , /i) is determined by an element £ = class £ 
of the cohomology set Hl(M, D(N)). Here we admit only covers of the kind above and 
their refinement. We define (E, h) to be by k bounded if there exists a representative 
cocycle {$p$a

1}a,p of £ such that 

sup sup sup iVVto/jft"1!.,. < oo (k - b). 
0<i<k-l a,p xtUcHUp 

(k — b) makes sense since UaC\Up, O(N) are Riemannian manifolds. 
Theorem 2.4 Assume (Mn,g) with (I) and (Bk) and (E,h) --> M a (k + \)-bounded 
Riemannian vector bundle. Then (E,h) has a metric connection V satisfying (Bk). 
Proof: By assumption, there exists bundle atlas { ( U a , $ a ) } a such that $p$~1}a,p 
satisfies (k — b). The corresponding orthonormal bases e i > a , . . . , eNia, e\$,..., eNtp 
are in Ua 0 Up related by the Qp®'1. Define V a by defining the e i > a , . . . , eNia to be 
parallel. V a is a metric connection in E\ua. Set V = ~2il>aVa. ^ 1S metric again. 

a 

We have to show V satisfies (Bk). Consider first the simplest case ipa + ipa = 1, 
^ a V a + ^ ^ » _ fi-o+MV*-**). T h e n 

jjv«+iwv'-v«) _ R~a + d~a(MVp - V")) + ^ [ V * - v " , V3 - va ] -

(2) = d v a ( ^ ( V 3 - V")) + ^ [ V * - V a , V* - V a] 

[V^ — V a , V^ — V a ] is bounded if V^e,-|Cr is bounded (or V a e j^ ) . But we can express 
the ei}Cn ..., eNia by Qa^p1 applied to e i ^ , . . . , eNip. Now V^e,-f/j and d ^ * ^ 1 bounded 
imply V^e^c bounded, i.e. V$IV^ — V a , V^ — V a] bounded. Similarly we conclude for 
dva (^p(V?- V a ) ) and </)ai + • • • + ipar = 1. Application of V, V 2 , . . . , Vfc to (2) and 
using |V lVa| < Ci, o <i < k + 2 and ((k + 1) — b) establishes the assertion.• 
Remark. Not every Riemannian vector bundle (E,h) satisfy (k — b), k > 1. For 
example, one only prescribes a cocycle {$p$~1}atp with { c / ^ ^ " 1 } ^ unbounded. 
Clearly every cocycle is 0-bounded since O(N) is compact . • 

3 Warped product metrics 

Let (Mn,g) be open with finitely many collared ends a, the collar [a,-,oo[x JV/1"1 

endowed with a warped product metric </|C|. = dr2 + fi(r)2daN., TV/1"1 closed, hi = daNi, 
i = 1,... , ra. 
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Lemma 3.1 (Mn,g) is conformally equivalent to a metric g = eu • g satisfying 

(Bk(g)) |(V*)'/P"| < Cj, 0<j<kand 

(I) rinj(g) = jrrf rinj(x, g) > 0 

if and only if this is true for each end.D 

Therefore we consider one collar [ a , o o [ x N n _ 1 with warped product metric ds2 = 
dr2 + f(r)2da2. 
Example. Let U0, U\,..., Un_i be an orthogonal basis in T(ryU)(]a, oo[x7V) with re
spect to ds2, U0 = -̂ -, Ui,..., Un_i orthonormal in TUN with respect to h = ds2. Then 
for the curvature tensor and the sectional curvature holds 

(3) R(Uo,Ui)U0 = fjUi 

(A) R(U0,Ui)Uj = -f'fhtjUo 

(5) R(Ui,Uj)U0 = 0 

(6) R(Ui,U})Uk = -f^Ui-hikU^ + RN^U^Uk, 

which implies immediately 

(7) K(U0,Uj) = -fj, 

(8) K(Ui,Uj) = KN(Ui,Ui)lf 
Ґ 
ľ' 

Here i, j , k = 1 , . . . , n — 1. The easy calculations are performed in [3] and once again 
below with u = 1. It is now easy from (3)-(8) to calculate the general curvature 
K(V,W). 
Example. 1. Take f(r) = e~r, N flat, then K = —1, e satisfies (B 0) but Tinj(£) = 0. 
2. Choose f(r) = e~r, KN ~- 0, then e does not satisfy (B0) and again rm\(e) = 0. 
3. If f(r) = er, N flat, then e satisfies (B0) and rmj(e) > 0. 

4. Finally take f(r) = er , then e does not satisfy (B0) but (I). 
Hence all good and bad combinations of properties are possible.• 
Since all boundedness properties of curvature and injectivity radius at co of dr2 + 
f(r)2da2 are governed by f(r) one should try a conformal transformation g = eu • g 
with u = u(r). 
Therefore we have to calculate the Christoffel symbols, the curvature tensor and its 
derivatives for g = eu • g, 

/ 1 
0 

0 

ľ • hij 

0 \ 

\o 
This are longer calculations and we present the results. 



METRICS C0NF0RMALLY EQUIVALENT TO BOUNDED GEOMETRY 107 

Lemma 3.2 Let (]a,oo[xU, (u° = r, u\ . . . , u n - 1 ) ) be a chart of e. Then the Christof-
fel symbols V^ of g = eu • g are given by 

f°0 = 0, fg,- = 0, /ori>0, 
f*, = 0, for k > 0, I* = ! (« ' + £)6l for j , k > 0, 

- y = ~{\u'P + f'flhii, for i,j > 0, f* = 1$*, for i,j, k > 0.D 

Denote U0 = g , tl. = £ , i > 0. 

Proposit ion 3 .3 The curvature tensor R is given by 

R(Uo, Ui)U0 = (\u" + 1 « ' £ + £-)tt., 

R(U0, Ui)Uj = - ( | u " / 2 + \u'f'f + T7)/..it!o, 

R(Ui,U0)U0 = -(\u" + i « ' £ + If )t/,-, 

£(t! . , t/0)tli = ( | u " / 2 + i « ' / ' / + / " / ) A y t!o, 

JR(tt.,t!i)t!o = 0, 

£(#"., t!i)tl* = -( j« '2 /2 + « 7 7 + f'2)(hjkUi - hiku5) + RN(UU us)ukn 
Remark . Setting u = 0, eu = 1 and using |tl.|5,2 = / 2 • |t!.|^2 yields (3)-(8).D 
Proposi t ion 3 .4 For u = —2log/, i.e. eu = / ~ 2 , g = e" satisfies (Boo). 

Proof: Inserting into the expressions of proposition 3.3, we obtain R(U0, Ui)U0 = 
R(U0,Ui)Uj = R(Ui,Uj)U0 = 0, R(Ui,Uj)Uk = RN(Ui,Uj)Uk and conclude g satisfies 
(Bo). Next we calculate S7R. According to lemma 3.2 and eu = f~2, V[/0t/o = \u' • U0, 

Vi'otli = 0> Vjy.f/i = Vv Uj and we obtain from 

(VuMUk,Ux)U, = VuAW^Ux)^) - R(VViUk,Ux)U^ - ^(ttfc, VVjttA)ttM 

-£(U*,t/A)VV,t/,., 

i, k, A, // = 0 , . . . , n — 1, that the only non-zero derivative is given by 

(9) VuAUu Uj)Uk = VbMUi, Uj)Uk. 

The right hand side of (9) is bounded since N is compact. Similarly we conclude for 
all higher derivatives.D 
Concerning the injectivity radius, we have the simple 

Proposi t ion 3.5 For u = —2log/, g = eu(dr2 + f2da2) satisfies the condition (I) at 
oo 

infinity if and only if f jhjdr = oo. 

Proof: ( ] a , o o [ x A f , / " V + o'er2) is the metric product of (]a,oo[xN, f~2dr2) and 
(IV, da2) and a curvr is a geodesic if and only if it is the cartesian product of geodesies. 
rmj(iV, da2) > 0. Hence (I) is satisfied at infinity if and only if it holds for 
(]a,cx>[xJV,/"2aY2) at infinity. The geodesies r(t) are of the kind r(t) = r(0)/f(r(0)) • 

oo 

f(r(t)) and rm\ > 0 at infinity if and only if / -ih-dr = oo for all r(0).D 
J r(o) M ; 

We summarize our hitherto calculations in 
Theorem 3.6 Let (Mn,g) be open with finitely many collared ends e t, g\€i = dr2 + 
fi(r)2daf-. a warped product metric, i = 1 , . . . , ra. Then g is conformally equivalent to 
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oo 

a metric g = eu • g satisfying (B^). If additionally f -rnxdr = oo, i = 1 , . . . , m, then 

g satisfies (I)X2 

The next step is to enlarge the class of starting metric. For Mn with finitely many 
collared ends denote by VVP(oo) the class of warped product metrics g at infinity as 
above. In [4] we introduced for the set M of all metrics g on Mn a metrizable uniform 
structure b'mU(M) and calculated the components comp(^) of g in the completion 
, b>m?J 
b^M =M n CmM and proved 

comp(<7) = b,mU(g) = {g' G b'mM\g and g' are quasfisometric and 
m • 

Km\9 - 9% :-- £ sup [(V»)*(ff - 9%,* < oo}. 
t=o xeM 

Denote 
M(Bk) = {g G M\g satisfies (Bk)}, 

M(l) = {g G M\g satisfies (I)} 
and 

M(l,Bk) = M(l)HM(Bk). 
The inclusions ix : M(Bk) <--•> M, i2 : M(l) <-> M, i3 : JVf^Bfc) ^ A^ induce 
uniform structures (z'A x zA) -1( 6 'mW(M)) on M(Bk), M(l), M(l,Bk), A = 1,2,3, and 
we obtain spaces b'mM(Bk),

 b'mM(l), b,mM(I,Bk) by the corresponding completion 
and intersection with CmM. 
Proposi t ion 3.7 If g G M(Bk) or g G M(I,Bk), respectively, and comp(g) is the 
component of g inbM2M then comp(g) C bM2M(Bk) or comp(g) C b'k+2 M(I,Bk), 
respectively. 
See [4] for a proof. • 

Theorem 3.8 Assume Mn open with finitely many collared ends £{, i = l , . . . , m . 
Let comp(g') be a component in b>k+2M. 

a. If comp(g') contains a metric g G VVP(oo) with lim fi(r) = 0, (-̂ -J bounded, 

0 < / < fc + 1, i = 1 , . . . ,m, then all metrics of comp(g') are conformal to metrics 
satisfying (Bk). 

b. If additionally f™ ~n~\dr = oo, i = l , . . . , m , then all metrics of comp(g') are 

conformal to metrics satisfying (I) and (Bk). 

Proof: a. According to 3.4, g = eu • g satisfies (B^) , eu\ei = ff2. We have to show g 
and g' = eu ly in the same component of b'k+2M. g and g' are quasiisometric since this 
holds for g and g'. This is equivalent to b\g — g'\g := sup \g — g'\g,x < oo, b\g — g'\g' < oo. 

xeM 
We have to show ^ V ' ^ - g% < oo, / < k + 2, where V = V^ and start with / = 1. 
Lemma 3.9 Let t be a tensor, u times covariant, v times contravariant, v < u, 
g = eu -g, u = —2log/ with lim f(r) = 0. Then \t\g < C- \g\ for the pointwise norms. 

Proof: We have at the end e \t\g,(r,x) = fu~v(r) • |2|s,(-.,*).• 
We apply 3.9 to the tensors V — V = V^ — V9 and t = g — g'. Vt can be written as 

Vt = (V - V)t + Vt. 
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Hence \Vt\5tX < C • \Vt\g,x < C • [|(V - V)t\g,x + |Vr |5 ,J . By assumption b\Vt\g = 
sup |^7t\g,x < oo. Using lemma3.2, we see that the only non-zero components of V —V 
xEM 

are | u ' = — y, f'f • A;J, — yS^. Here we consider one arbitrary chosen end e. But 

/ —> 0, -j bounded implies / ' -» 0, / • / ' -> 0. Hence all 3 expressions are bounded 

and we can estimate |(V — V)t\giX < Ci\t\9tX and obtain 

b\Vt\§ < oo. 

Consider now 1 = 2. 

n n x |V2<|5l, < |(V - V)(V - V)t | + |V(V - V) . | + |(V - V)Vt | + \VHi < 
1 j < « + |V*| + |V2<|] + | V ( V - V ) i | 

The last term of the right hand side of (10) is bounded if (4-) and ( / • / ' ) ' are bounded. 

But this follows from our assumption, \J-j = ^ Tj bounded, / -> 0, / ' -> 0 imply 

/ • / , ; —> 0. The case Vlt leads to the estimation of expressions of the kind 

l(v - v)*'1 v'2... (v - vy'-'vwi, «i + • • • +1, = / 

(cf. [4]). Their boundness follows once again from b\t\g < oo, . . . , 6 |V^ | 5 < oo, / —> 0, 

4 bounded, 0 < i < k + 1. b. follows from a. and proposition 3.5.D 
E x a m p l e . 
1. For a warped product metric ds2\e = dr2 + f(r)2da2 holds rmj(e) = 0 if and only if 
lim f(r) = 0. 
2. If f(r) = e~r then for g = f~2dr2da2 rmj(g) > 0 a n d (Boo) are satisfied. 
3. There are warping functions f(r) such that rmj(g) — 0 and nn j ( /~ 2 ^ r 2 + ^ 2 ) = 0. 

oo 

One has only to construct a function f(r) with lim f(r) = 0 and / jr-dr < oo, but 

this is very easy. In this case it is still possible that there exists a conformal factor eu 

such that g = eu • g satisfies nnj(g) > 0 and (Boo(g)) but eu = f~2 does not work.D 

4 Applications 

Let (Mn,g) be open, oriented, F : M4 —> S4 a fixed grafting map as constructed 
SU(2) 

by Taubes (cf. [5], [7]). Consider the Hopf bundle P0 : S7 —r 5 4 , the associated 
quaternionic line bundle E0, the t' Hooft connection VQ = d + AA, the pull back 
P = F*P0, E = F*E0, VA = F*VA and comp(VA) C CP(BkJ), where comp(VA) 
is the component of VA in the completed space Cp(B&,/) of su(2)—connections of 
bounded geometry and finite Yang-Mills action. Denote by A2,- the Laplace operator 
acting on anti self-dual 2-forms, by ae the essential spectrum and by • ^ the L2-
intersection pairing. Then we proved in [5] 
Theorem 4.1 Let (M4,g) be open, oriented with (I) and (Bk), k > 3. 
inf <7e(A2,-|(kerA2-)-

L) ^ 0, #5,L2 positive definite. Then for X sufficiently small, 
comp(Vx) contains a self-dual connection.D 
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L e m m a 4.2 The L2-intersection pairing *g,L2 is positive definite if and only if this 
holds for *g,L2> <j = eu • g. 

Proof: Let * be the Hodge operator acting on 2-forms. Then *g = *g and ** = 1. 
Hence M £ — fu A *guj = fuj A *guj = \^\L2^- NOW U is Inharmonic by definition 
if \UJ\L2 < co and duj = 0 = SUJ. But Sguj = 0 if and only if *gd *g UJ = 0 if and only 
if d *g UJ = 0 if and only if 6guj = 0. Final ly UJ 9g UJ := f UJ A UJ = f UJ A *g *g UJ = 

f UJ A *g *g UJ = UJ %g UJ. D 

T h e o r e m 4 . 3 Let (M4,g) be open with finitely many collared ends e-%, g\Ei = dr2 + 
0 0 

fi(r)2dcr2
N., f jTp^dr = 00. i = 1 , . . . ,m, and *g,L2 positive definite. Define comp(Vx) 

ai ^ ' 

as above. Set g = eu • g, u\£i = -2logfi. If inf ae(A2-(g)\{ker£2 _(g))j-) > 0. Denote 
by comp(Vx,g) the component ofVx defined by VA, V^, g. Then for A sufficiently 
small, comp(\7X^g) contains a self-dual connection which is also self-dual with respect 
to g. 
Proof: We perform the conformal transformation 3.6 and obtain a component 
comp(VA, g). Then we apply 4.1, 4.2 and use that self-duality is a conformal invariant.D 
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