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A GAUGE THEORY FOR THE KADOMTSEV-PETVIASHVILI SYSTEM * 

S. Kanemaki, W. Krdlikowski, and O. Suzuki 
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Abstract 

A Lagrangian formalism of scalar fields is considered and a new 

concept of "connection" is introduced. By this a gauge-theoretic 

understanding of the Sato theory on the K.-P. system is obtained. 

Our gauge group G_ is the group consisting of pseudo-differential 

operators of non-positive orders with certain growth conditions. 

Then it can be concluded that the space R* of elements of &_ 

giving solutions of the K.-P. system defines the flat R*-connection 

which we call the K.-P. connection. This connection can be regarded 

as a special gauge field. 

Introduction 

It is well known that various soliton equations can be obtained 

by using the theory of isospectral deformations of linear differen

tial operators. A remarkable unification of soliton equations has 

been established by M. and Y. Sato [5] in terms of isospectral de

formations of D = d/dx in the category of pseudo-differential 

operators. This unified system of equations is called the Kadomtsev 

-Petviashvili system (= K.-P. system). They discovered the suppris-

ing fact: The space of solutions of the K.-P. system makes the Gras-

smann manifold of infinite dimension and moreover, any solution of 

* This paper is in final form and no version of it will be 

submitted for publication elsewhere. 
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the K.-P. system can be reduced to that of a system of certain 

linear equations. Several attempts of undetstandings on the Sato 

theory and its generalizations have been presented. Some of them 

are the method of Riemann-Hilbert transforms [10]/ the method of 

group-decompositions [4], [7] and the field-theoretic method [1]. 

Our attempt which we present here is a new one, which we call a 

. gauge-theoretic understanding. 

In this paper, we see that the K.-P. system can be understood 

in the view point of Uchiyama's gauge theory [9]. We note that our 

gauge group is an infinite % .dimensional Lie group. Hence our gauge 

theory for soliton equations is contrasted with that of Yang-Mills 

equations and nonlinear Heisenberg equation in dimensions of their 

gauge groups [3]. First, we consider the Lagrangian action: 

JC= I iJ5 D^ dx (D = d/dx) 
JR 

for scalar fields IJJ, ijJ, i.e., wave functions on the real line 3R. 

We analyse the symmetry of cC and obtain as the gauge group of the 

first kind a group consisting of invertible pseudo-differential 

operators with constant coefficients of the form: 

. . . + c D n + . . . + c. D + c + c .. D"1 + . . . + C D"n + . . . . n 1 o -1 -n 

Secondly, we apply the Uchiyama's gauge theory to our Lagrangian 

formalism. In this case, the gauge group of the second kind becomes 

a group consisting of invertible pseudo-differential operators with 

function coefficients of the form: 

. .. +u (x) D n + . . . +U. (x) D + u (x) +u 1 (x)D"
1 + . .. + U (x)D"n n 1 o -l -n 

Then in order to obtain a new Lagrangian action which is invariant 

under this group, a connection, i.e., gauge field, necessarily 

arises in our consideration. It has a worth mentioning that pseudo-

-differential operators with negative orders, extended from usual 

differential operators, may be introduced as elements of the gauge 

group of the first or the second kind. 

In Section 1, from a gauge group of pseudo-differential oper

ators we introduce a new concept of "connection" on a fibre space 

over IR. Here we have to pay attention to the fact that our con

nection has been defined not only for a subgroup but also for a 
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special subset R of the gauge group, although R does not admit 

a structure of subgroup. We prove that the decomposition law of 

pseudo-differential operators into the parts of non-positive and 

negative orders gives rise to the flat connection (Theorem 1). This 

is our first step to a gauge-theoretic understanding on the K.-P. 

system. In Section 2, we shall treat the Lagrangian action of 

scalar fields ijj, if with infinitely many parameters t= (t..,t2, 

. . . ) : 

JTt= / ifd*dx, d= E n ^ 0/Btn)dtn. 

For this Lagrangian action we consider the gauge groups G , G of 

the first and the second kind, and then G-connections. Then we 

can conclude that the space R* of elements of G giving sol

utions of the K*-P. system defines the flat R*-connection which 

we call the K.-P. connection (Theorem 2). 

Our discussions show that the space of solutions of soliton 

equations determines a special gauge field. Hence; we may expect 

to extend our discussions to the Yang-Mills equation and nonlinear 

Heisenberg equation by a gauge-theoretic version of the Sato theory 

on the Minkowski space-time [3]. 

The authors would like to express their hearty thanks to Profs. 

I. Furuoya, J. Lawrynowicz, S. Sakai, L. Wojtczak, and J. Yamashita 

for their valuable discussions. 

1. A Lagrangian formalism of scalar fields 

We consider complex-valued functions defined on the real line 

3R and a collection of operators including the differential oper

ator D = d/dx. Let ty and if denote two functions. Here if may 

not be the complex conjugate of i|; . Let S be an operator which 

maps a function ty to the function Si|) . An operator if S formed 

with if and S is defined by (if S) \p = if (S i|0 for any ty . 

First, we deal with a Lagrangian action for \Jj and if given 

by 

(1.1) / iDiJidx. 

We restrict ourselves to the case where there exist invertible op

erators W satisfying the following action law: For a function ^ 

and an operator ijj ( = if • 1), identified with the function if, an 

operator W acts on the pair as 
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(1.2) * •* ** =W*, ~ + ~'=~W~ 1. 

Under this action the function ~ \p is invariant. We are interested 

in a set of operators W which makes a group G and preserves 

~ D tj) invariant, equivalently satisfies WD = DW. Choices of such 

groups are not unique. One of possible groups can be obtained by 

(1.3) G ={w|w=Z n = - I
c
n
D n w i t h constant coefficients}. 

Then the group G is a subgroup of G . For an invertible oper

ator W we p\it 

(1.4) * w = w i K ~ W=~W~ 1. 

PROPOSITION (1.5). The Lagrangian action 

(1.6) j : = / ~WDi(Jwdx, W€G o 

° JR W ° 
is invariant under the action of the group G . 

P r o o f . We choose arbitrary elements W and W' of G 

-1 ° 
and set <(> by W = $ W* , namely, <f> = WW* . Since 

( 1 . 7 ) * w - = <|> *w, , ~ = " (()" , 

w e o b t a i n i|; D i | / . = ip $ D <\> $„+ = t(; D i/;,* . 

The group G is called t h e gauge group #/ t h e first kind. 

Next we proceed to a group 

(1.8) G={W|W=E n^+0° u (x) D n with function coefficients}. 
n—"-*°° n 

We call an element of G a formal pseudo-differential operator [5]. 

G is called the gauge gr^up of the second kind. In order to obtain 

exact mathematical meanings, we have to restrict our considerations 

to special jroups. For example, we may choose a group G con

sisting of elements W with the following condition: Every u (x) 

is analytic function and there exists an integer n such that 

ordu (x) > n - n for any sufficiently large n ([4], [7], [8]). 

We have to pay attention to the fact that the Lagrangian action 

£ is not invariant under G, because the commutator [D, W] = 

D W - W D does not vanish identically. Here we note that the follow

ing equalities hold: 
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(1.9) [D, W] = Z(Du (x)) Dn for W = Z u ( x ) D n 

n n 
and 

(1.10) WDW" 1 =-[D, W] W"1 4-D for WeG. 

The Uchiyama gauge theory [9] says that in order to get a new La-

grangian action which is invariant under the group of the second 

kind, a connection, i.e., a gauge field, has to be introduced. We 

call the disjoint union L-Jt (") (x)|W£G} the fibre space gener-
xe JR 

ated by G over 1R, or the fibre G-space simply. Then we can 

make the following definition: 

D e f i n i t i o n (1.11). Let G be a group of the operators 

described in (1.8) and let R be a subset of G. A collection 

{$(W)|w£R} of operators is called an R-connection (with a range 

R on the' fibre G-space), if (1) there exists a pair (G.,,p ) 

constituted with an injective set-map p: G., + G of a group G.. to 

G such that R=p(G 1) and (2) L (W) = D - ft (W) -satisfies 

(1.12) Lfi(W) = (f L^(W') (f~
1 for W, W' e R, where W = $ W'. 

In particular, we call it a G-connection if in addition p is a 

group-isomorphism. 

The following are examples of G-connections: 

EXAMPLES (1) ft(W)=D.. (2) ft (W) = [D, W] W~1 , in this case 

(1.13) L(W) 5 L^(W) = WD W"1 . 

(3) Let G* be a subgroup of G and i: G' -> G be the natural 

inclusion mapping. If ft(W) (WeG) is a G-connection, then ft (W) 

(W^G') becomes a G*-connection. 

Immediatly from (1.12) we see that if ft-(W) and ft2(W) are 

R-connections, then the relation 

(1.14) ftq (W) - ft2(W) = $ (ft.. (W) - ft2(W')) ())"
1 

holds for W, W* e R, where W=(j)W'. This fact and Example (2) 

show that the following ft(W) given by 

(1.15) ft(W) = W"1 ([D, W] W"1 - ft(W)) W for W £ R 

satisfy the condition fi(W) =^(W') for any pair of W and W* of 

R, namely ft(W) does not depend on a choice of W£R. Therefore, 
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we may write as ft=ft(W). We call ft the connection form deter
mined by ft(W). An R-connection is called to be flat if its con

nection form vanishes identically, namely ft(W) = [D, W] w" . 

By an application of Uchiyama theory to the Lagrangian action 

(1.6), we obtain 

PROPOSITION (1.16). Let ft(W) be a G-connection. The La

grangian action 

(1.17) «£= / ̂ W(D- ft(W)) iK7dx, WGG 
IR w 

is invariant under the group G. 

Proof. For arbitrary elements W and W' , where W = <\> W' 
in G we have 

*WL(W) *w=$
W%"1(*L(W')r1)c()^ =*W' L(W') *w> , 

which implies the invariance of X under G. 

The following group is important for a study on the K.-P. sys

tem. We put 

(1.18) G_= { I n"Q vn(x) D~
n£ G|vQ(x) = 1>, 

further, the space of operators °$ = { £ ~-oo u (x) D } and its com

plementary subspaces CTJ- = { I n~Q u (x) Dn } and SJ _ = 

{ E n~ u (x) D~n}. Then any element S of *0 has the decomposing —n 
tion: S= (S)++ (S)_ for (S)+£<3+ and (S)_£<3_. Then we can prove 

THEOREM 1 . 0)(W) (W€. G_) is the flat G_-connec t ion if and 

only if 

(1.19) u)(W) =-(L(W))_ for W6G_. 

P r o o f . For W,W'£- G_, where W=<|>W*, i t h o l d s t h a t 

(L(W))_ = (ML(W') <f>~1)_ = ( ( K L t r ) ^ " 1 ) ^ ( (KLlW'J^ 'V 

= (<f) D (()""1)_ + < | > ( L ( W ' ) ) _ (t)"1 

= ( - [ D , <(>] c()""1 + D ) _ + 4 ) ( L ( W ' ) ) _ ( ( ) " 1 ( b y ( 1 . 1 0 ) ) 

= - D + <|> D (J)"1 + 4) ( L (W' ) ) _ c))""1 , 

which implies D - u) (W) = (J) (D - u (W') ) $ . Hence CD (W) is a G_-con-

nection. Comparing the non-positive orders of the both sides of 

(1.10) , we obtain a) (W) = - (L(W) ) _ = [D, W] W~1 , i.e., a) (W) is flat. 

Conversely, if OJ(W) (We G_) is the flat G_-connection, then co(W) 
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reduces to u (W) = [D, W] w"1 = - (L(W) ) _ by (1.10).. 

2. A gauge theory for the K.-P. system 

We consider a Lagrangian formalism for scalar fields, ip = i|; (xrt) 

and iji = ij5(x,t) defined on the real line (x€.)]R with infinitely 

many parameters 

t= (tr t2, ... ) , 

and for some collections of operators including D = d/dx and D = 

8/9t . The total differential operator with respect to the par

ameters is denoted by 

<2-1) d = 2n=1 D n d V 

The Lagrangian action which we treat here is given by 

(2.2) <3f(t) = f iMx, t) diKx, t) dx 
1R 

for functions ty and if. We proceed to our discussions analogous 

to the one done in the previous section. We are interested in in-

vertible operators W=W(x,t), consisting together with the action 

law for ijj and ijJ: 

(2.3) * -* *' =W *(= *w) , i> + V =* w"1 (=^W) . 

Hence, the function $ I|J is invariant under this action. 

First, we consider a group 

(2.4) So={W|W= E
n=t: cn(x)D

n}. 

In this case, we observe that coefficients c (x) are constant with 

respect to t. Immediately, from WD = dW for W6G we have 

PROPOSITION (2.5). The Lagrangian 

(2.6) X = / * Wd* dx, W£G Q, 

possesses the symmetry of the group G . 

Following the»Uchiyama theory, next we deal with a group 

(2.7) &={W|W= E n=+0° u (x, t) Dn with the property (*)} 
i n=-°° n 

(*) u (x, t) (n = 0, ±1 , ±2, . . . ) are analytic functions of x 

satisfying the following growth condition: There exists an 

integer n such that ordu (x, t) >n-n for any suffi

ciently large n 
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(see [4], [7], [8]). 

The Lagrangian action (2.6) gives rise to a gauge group G of the 

first kind and a gauge group G of the second kind respectively. 

X is not invariant under G, since commutators 

[Dm, W] = Z(DmUn(x, t)) D
n (m= 1, 2, ...) 

for W= I! un(x, t) D
n, do not vanish identically, i.e., [d, W] ± 0 . 

Hence we have to make 

D e f i n i t i o n (2.8). Let ,R be a subset of the group <_i 

described in (2.7). A set {ft(W)|W£_?0 of operators is called a 

multiconnection (or total connection) with a. range ft (or, simply 

fc-connectiin) on the fibre G-space, if Q(W) has the form &(W) = 
Znfln(W) d tn whose fi (W) is a connection with a range ft with 

respect to D : 

Dn- fin(W) = <f>(Dn- nn(W')) 4>""
1 

for W and W'e ft/ where W = <|> W* (<|> e &) • ftn(W) is call the 

partial connection of fi(W). 

We note that a multiconnection __(W) with a range ft implies 

d - n(w) = z n * ( D n - nn(w')) (f)~
1 = *(d- n(w*)) <f>~1 

for W, W'e R with W = (j) W* . 

By use of Uchiyama's Theorem, we obtain 

PROPOSITION (2.9). Let __ (W) be a ^-connection. The Lagran

gian 

<2T= / ^w(d - n(w)) *T7dx for W e 5 
3R w 

is invariant under the group G. 

]/$Q set 

<2-1°> V ^ n ^ n ^ ^ o ^ ' S-=^n=ru-nD"ne&luo^>' 
Corresponding to S, G and 5__, we consider the spaces of operators 

^jf = { £ "__" u Dn}, its complementary subspaces 

(2.11) (J+={_:
n:J00un(x, t) D

n}, %_={Z*Z" u^(x, t) D"n}, 

f\j <\, r\, ^ 

t h a t i s the* d i r e c t sum *$f- ^ ® <3-• Hence, any e lement X € <# i s 
w r i t t e n a s X= (X) + (X)_ f o r (X), € § and (X) <£$ . 

t- + •*• " "" __i 
Here we r e c a l l t h e K . - P . s y s t e m . The o p e r a t o r L=WDW f o r 
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W£G_ derived from the flat connection implies that Ln = W Dn W~ 

and its decomposition Ln= (Ln) + (Ln)_. In this case, (Ln) is 

the n-th differential operator. The K.-P. system is a system of 

equations defined by 

(2.12) 8L/9tn= [(L
n) + , L] (n= 1, 2, . . . ) . 

When W (£G_) is an element described in the solution L = WDW 

of the K.-P. system, we shall say that W gives a solution of the 

K.-P. system. It is known ([1], [5], [6]) that an element W of G_ 

gives a solution of the K.-P. system if and only if W satisfies 

(2.13) 3W/3t +(Ln(W))_W=0 (n=1,2,...). 

The following theorem is our main result: 

THEOREM 2. Let R* be the space of all elements of G_ each 

of which gives a solution of the K.-P. system. Then the set 

{Qv _ (W)|W6R*} defined by 
1\ • XT • 

(2.14) n (w) = E n (w) dt , n (w) =-(Ln(w)) 
j\.ir. n n n n — 

becomes the flat R*-connection (say, the K.-P. connection) on the 
f%bre Qj-space over TR. 

Remark. (1) The K.-P. connection is a direct generalization 

of the connection given in Theorem 1, when we identify t1 with x 

and set t = 0 (n=2, 3, . . . ) . (2) The flatness of the K.-P. con

nection is well known as the Zakharov-Shabat equation. 

For the proof of this theorem we need the following two lemmas: 

LEMMA 1 (Mulase's decomposition theorem [4]). The group & 

described in (2.7) can be decomposed into 

G = G_ • G+ , 

in a sense that any element g£G determines the unique pair of 

elements g<i£G_ and 9o^ + SUJh that g = g1 • g2 • 

LEMMA 2 ([4] , [6]). There exists a one to one correspondence 

between the space R* and the space Q of solutions U of the 

initial value problem: 

(2.15) au/atn= [D
n, u], u| t = 0 = uoe G_, 

where G_ is given in (1.18). The exact correspondence is described 
in the following manner: A solution U of (2.15) determines an 
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element W of G_ by the decomposition U = W V in Lemma 1. Then 

L(W) =WDW gives a solution of (2.12). Conversely > for a solution 

W of (2.12), we can fond a unique element V of G, such that 
' -1 

VI. _ 0 = identity and U = W V gives a solution of (2.15). 

The proof of Theorem 2. Let U be any element of G_. 

U determines the unique solution U (e£ G_) of (2.15) by Lemma 2. 

U can be decomposed uniquely as U = w" V with W6G_ and V£ S 

by Lemma 1. This gives rise to a mapping p: G_ -> &_ which maps U 

to W. This mapping p is injective ([4], [6]). Then we see that 

R*=p(G ). Next we show that ft ._ (W) becomes an R*-connection. 
— J\ • if • 

Let W and W' be elements of R* and set <}> ((f>G&_) by W=<J>W'. 

It follows from 

(9W/9tn) = 0<|>/3t ) W' +(()OW'/9tn) 

and from (2.13) that 

Hence 

(L
П
(W))_ W = *Эф/Эt ) W' - ф(L

П
(W'))_ W' 

ш
n
(W) = Oф/Эt

n
) ф"

1
 + ф ш

n
(W') ф"

1 

holds, which implies that a) (W) (We R*) is a partial R*-connec-

tion. Therefore, Qv n (W) (W^R*) is an R*-connection. The 
JA • XT • 

f l a tness of the connection fol lows from (2.13 ) : 

0= £ n O w / 9 t n + (Ln(W))_W) d t n = InOW/9tn-o)n(W)) W) d tR 

= [d, W] - ftK>p> (W) W. 
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