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The purpose of this note is to give an elementary proof of a special case of the
Stokes theorem. The theorem presented here is called “Integral Theorem”. As an
application of the theorem one can obtain an analytical proof of the Brouwer fixed
point theorem, a non-retraction theorem and other classical results.

For any natural number n > 1 let P = P(n) be the set of all permutations of the
natural numbers 1, ..., n and let s(ac), where o = (al, ..., &,) € P, means the sign of «,

s(@):=[]{sgn(o; —a):i<j,i,j=1,...,n}.

Assume that h: U » R", h = (hy, ..., h,), is a differentiable map from an open
set U < R". Recall that the Jacobian det #'(x) is equal

det (x):= Y s(a)(ahl . a’“) )

aeP 0x, Ox
ay dp,

Lemma 1. If h: U - R", n > 1, is a map of class C? from an open set U = R",
then for each point x € U the following equality holds

det H(x) = 35 (hl Ohs ... ‘3"") (x).

0
P 0x,, 0x,, 0x,

Proof. Let us calculate

S 5(a) (hl Oha %L) (x) = zs(a)<ah1 ah”)(x) "

i)
aeP ax, 6x,2 aeP ox, 6x¢”

@y

1

+ a; s(2) hy(x)

<6h2 . ﬂ) (x) = det h'(x) + hy(x) r(x),

0x4, \0x,, 0x,,,
where
0 [oh oh
1 =) s(a 2 =2},
) g;:’ ( )ax,l <6x¢2 6xan)

*) Uniwersytet Slaski, Instytut Matematyki, ul. Bankowa 14, 40 007 Katowice, Poland
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In order to prove the lemma it suffices to show that » = 0. Let us note that

2
) 0 (Shy Oh\_ _0'hy Ohs Ohy
0x,, \0x,, 0x,, 0X,, 0%y, 0X,, 0x,,
+ 6_112 oh,_, azh,,
0x,, T 0x,,_, ' ox, ax,"
Define
) .o Oty Ohiy  Ohi Ohiny Oy
¥ 0x,, 0%,y 0%,y 0xy, 0%,,,, 0x,,
We have
0 [oh "
4 2 ... H;
) 0x,, (6xmz 6x ) i=22
and hence
© EOECHE RN CE

For each i = 2, ..., n let us define a bijection A;: P — P,
(6) Ao =Bsp =a, Bi=a, &P;=a; for j*1,i.
From definition of the function s it follows that
(7 s(A) = —s(x)
Applying the Schwarz theorem on mixed derivatives:
0*h _ o*h
0x;0x;  0x;0x; ’

we get
(8) H}" = Hf .
From (7) and (8) we obtain
2y s(«) Hf = s(oc) Hf + Zs(l o) Hy® =

- 06 + G - 206 - s@] & = 0.

In virtue of (5) and from the above we infer that r = 0.
Integral Theorem. Let f, g: U — R" be maps of class C? from an open set U < R".
Assume that K = U is a compact set such that f | BdK =g | Bd K. Then

[ detf'(x)dx = [ det g'(x)dx .
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Proof. (I) n = 1. Let K = R be a compact set satisfying the assumptions of the
Integral Theorem. At first, let us observe that if x € Bd K is a non-isolated point
inthe boundary of the set K then f’(x) = g’(x).Indeed, choose points x, € Bd K \ {x}
such that x, — x whenever n — oo. Since f(x) = g(x) and f(x,) = g(x,) for all
n=12,..., we get

f’(x) = lim f(x) - f(x") = lim g(x) - g(xn) - g:(x) i

n—o X — X, n— o X — X,

The interior of the set K is of the form
IntK = {(a,, b,): ne A},

where A is a subset of the set of natural numbers and the intervals (a,, b,) are convex
components of Int K (and so they are mutually disjoint). Since K is a compact set,
we have f(a,) = g(a,) and f(b,) = g(b,) for each n € 4, and in consequence

o fi(x)dx = o g'(x) dx
and the above implies that
[ f(x)dx = [¢g'(x)dx
because the set of all isolated points in Bd K is at most countable.

(I) n > 1. Let K = U be a compact subset of an open set U = R” and assume
that h = (hy, ..., h,): U > R" is a map of class C2. Define

(1) I(hy, ..., ) = (g det h'(x) dx .
From properties of determinant it follows that
(2) I(hy, ..., h,) = s(@) I(hy,s ..., h,) forall aeP.

According to lemma 1 we get

) I(hyy ooy ) = I 3 s(a) =2

K a€P 6x¢l

oh oh
hy —2%.....—)(x)dx.
( ! ox,, ax,")() *

Now, we shall verify that if g,: U = R is a function of class C? such that
hy |BdK = g, | BdK then

(4) I(hl, ooy h") = I(gl’ hz, oy h”) .

Indeed, let (x;, y;) e R, x R*"™!, R; = R, means a point (X, ..., X;, ..., X,) € R"
and let IT;: R* - R"™! be the projection; ITy(x; ¥;) = ¥i = (X15-eus Xim1s Xig s oo+
..ss X,). Define

K(y;) := {x;e R;: (x5, ¥;)) €K} .
Since K is a compact subset of R", the set K(y;) is a compact subset of R, and

hy(x;, ¥:;) = g1(x:, y;) for each point x; € Bd K(y;). According to part (I) the following
equality holds for each x € P
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J. g (h, Oh, ah") (%ap ¥g,) dx,, =
0x

K(yay) axax axaz an

0 oh oh
J (91 Z. ... ") (xar> ) A, -
K(vay) 0%, 0x,, Ox

@n.

()

From the above and the Fubini theorem we get

I(hy, hgy ..y ) =jK§s(a) 0 (h1 Ohy .....%)(x)dx -

0x,, 0x,, 0x,,
=Y s(ac)j dyalf 9 (h, Oh, e @1> (%ays Va,) A%, =
acP ey (K) KOap) 0% \ 0%, 0x,,
0 oh oh
=Y s(«) dy,lJ‘ (gl 2. \1) (X2ps Vay) A%, =
aeP Ma,(K) K(yay) axal axaz 0 @n
i} oh oh,
- 55 [ 2 (glax—z.....a )(x)dx=I(g,,h2,..., ).
@€, JK ay @z on

Now, assuming that f | Bd K = g | Bd K we get the following sequence of equalities
“@ @
fxdet f'(x)dx = I(fy, fas s fu) = 1(G15 25 s fo) =
)

) 2
- I(fz: g1,f3a ""fn) = —I(gz, gl’fS’ "',fn =
(2),(4)
(g1, 92, f3 - s o) = ... =1(g1, 925 ..., a) = [rdet g'(x) dx .
The proof is completed.
In this part we shall give some applications of the Integral Theorem to fixed point
theory. For this purpose let us introduce some definitions and notations.
Let B:= {xeR" |x| < 1} be the unit ball and let S=BdB, S = {xeR™
|x| = 1} be the boundary of the ball B.
A map f: B — B is said to be a C* map, 0 < i < oo, if there exists an open set
Uc R, Bc U, andamap f: U > R" of class C* such that f| B = f.
A map ¢:S — S is said to be a C; map, 0 < i £ oo, if there exists a C' map
@:B— Bsuchthat | S = ¢.
A continuous map ¢:S — S has the B-coincidence property if for each pair
f, g: B —» B of continuous maps, where f ] S = ¢, there exists a point x € B such

that g(x) = f(x).

Lemma 2, Let p: S > Sbea C{, map for some i, 0 £ i < o0. Then the following
conditions are equivalent:

(i) The exists no C' map f: B — B such that f | S = ¢ and f(B) < S.
(ii) The map ¢ has the B-coincidence property.
(iii) Each continuous map f: B — B such that f| S = ¢, is “onto”.
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The proof of the lemma is routine. For completness it will be presented here. Let
us precede it by some remark on a retraction operation. Describe a map, which each
pair a, b € B of distinct points assigns a unique point ¢ € S such that the points
a, b, c lie on the same line between a and c. It means that there exists a unique number
t = 0 satisfying the following equation

b—-a
b—a

For each two points x = (xy, ..., X,)s ¥ = (¥ ---» ¥,) € R" let xy denotes the scalar

|a + tv| =1 where v =

product xy = x;y; + ... + x,y,. We have
1=|a+w|=aa+2tav+ tow.
Since oo = |v]|> = 1 and |a|* = aa, we get
2 +2tav—14+a%>=0

= av = J[1 - [af* = (ar)].

R(a,b):=a+t

Define

where
b—a
b=

t=av— J[1-|a]* = (av)*] and »=

From the above it follows that if f, g: U - R", U < R", are continuous maps such
that f(x) # g(x) for all x € U, then the map

r(x) := R(g(x), f(x))

is continuous and has the following properties:

(a) If g(x),f(x) e B then r(x)eS.

(b) If f(x)e S then r(x) = f(x).

(¢) If g, f are of class C' then r is of class C, too, for i = 0, ..., c.

Proof of lemma 2. (i) = (ii). Suppose that g(x) # f(x) for all xe B. The com-
pactness of B implies that there exists an ¢ > 0 such that |g(x) — f(x)| 2 & for all
x € B. Put § = ¢/4. According to the Weierstrass theorem there exists a polynomial
p1: R" > R" such that |g(x) — py(x)| < & for all xe B. Let us put p(x):=
:= py(x)/(1 + 6). Then p(B) = B and |g(x) — p(x)| < 26 for all xe B, and in
consequence p(x) # f(x) for all x € B. Now, define r: B — B, r(x) := R(p(x), f(x)).
Properties (a), (b), (¢) imply that the map is a C' map, ¢ = f|S = r| S and r(B) =
c S, contradicting (i).

(ii) = (iii). Suppose that there exists a point ae B\f(B). Define s:B — B,
s(x) := —R(a, f(x)). According to properties (a), (b), (c) the map s: B — S is con-

87



tinuous and s(x) = —f(x) whenever f(x) € S. Thus s(x) + f(x) for all x € B, which
is in contradiction with (ii).

(iii) = (i). Obvious.

Recall the following coincidence theorem due to H. Schirmer [5]:

Let f, g: B— B be continuous maps such that f(S) = S and f| S: S — S is not
nullhomotopic. Then there exists a point x € B such that g(x) = f(x).

Observe that the implication (i) = (ii) yields Schirmer’s theorem. In our termi-
nology the mentioned theorem means that if f | S is not nullhomotopic then f | S
has the B-coincidence property.

Indeed, if f | S has not the B-coincidence property then there exists a continuous
map h: B - S such that h | B = f| S. The map H: S x [0,1] - S, H(x, t) = h(tx)
accomplishes a homotopy between f | S and the constant map H(x, 0) = h(0).

Conversely, each continuous map H:S x [0, 1] - S such that H(x, 1) = f(x)
and H(x, 0) = ¢ for all xe S, induces a continuous map h: B —» S; h(x) :=
:= H(R(0, x), |x|) for xe B\{0} and h(0) := ¢, such that h | S = f| S. Thus we
have got the following

Observation. A continuous map ¢: S — S has the B-coincidence property if and
only if it is not nullhomotopic.

Lemma 3. Assume that ¢: S — S is a Cz map. If there exists a C> map h: B — B,
@ = h|S, such that det h'(x) + O for some point x e Int B, then ¢ has the B-
coincidence property.

Proof. In view of lemma 2(i) it suffices to show that there is no C?> map f: B — S,

f=(f1s-.,f,), such that f | S = ¢. Suppose that such a map exists. Since f(B) = S
we have

Y fix)=1 forall xeB
i=1

so that forallxeIntBandj=1,...,n

y2 (7 =o.

This implies that
detf'(x) =0 forall xeIntB,
Another proof one can get immediately from the inverse function theorem which
tells us that if det f'(x) # 0 for some x € Int B then Int f(B) + 0.

Now we shall show how to apply the Integral Theorem to discern that a C} map
@: S — S has the B-coincidence property.

Proposition. Let ¢: S — S be a C3 map. If there exists a C*> map h: B— B such
that ¢ = h | S and

fsdet h'(x)dx % 0
then ¢ has the B-coincidence property.
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Proof. Let f: B— B be a C* map such that f|S = h|S. From the Integral
Theorem it follows that [y detf’(x)dx & 0. Hence there exists a point x € Int B
such that det f’(x) # 0. Applying lemma 2 we infer that ¢ has the B-coincidence
property.

In the case when h = identity from Proposition we get

Corollary 1. (Bohl-Brouwer fixed point theorem.) Each continuous map g: B —» B
has a fixed point.

Corollary 2. (Non-retraction theorem.) Let K = R" be a compact set. Then each
continuous map m: K — K such that m(x) = x for all x e Bd K, is “onto”.

Proof. Choose an r > 0 such that K < B,, where B, = {x:|x| < r} and let us
define M: B, —» B,, M(x) = m(x) for x € K and M(x) = x for x € B,\ K. The map M
is continuous and M | Bd B, = identity. Applying Proposition to h = identity
we infer that condition (ii) of lemma 1 holds and, in consequence, the map M: B, —» B,
must be “onto”. Hence m(K) = K.

Analytical proofs of the non-retraction theorem or the Bohl-Brouwer theorem one
can find in [2], [3] and [4].

Another application of Proposition is a new proof of the fundamental theorem of
algebra

Every cpmplex non-constant polynomial

p(z)=z"+a;z" ' + ...+ a, hasazero.
Indeed, let us put
ri=1+|a)| + ... + |a,
1 m -1 m—
fz):= = (rz" =z g(z):= —r;[a,(rz) Yoo+ a,].

One can verify that f(B) < B, f(S) = S and g(B) = B. From the Cauchy-Riemann
equations for holomorphic functions we get

detf'(z) = |f'(2)]*.

(pdetf(z)dz > 0.

This implies that

According to Proposition there exists a point z € B such that f(z) = g(z). But this
is equivalent to p(z) = 0.

The above method can be also adopted to prove the fundamental theorems of
algebra for quaternions and Cayley numbers. For details the reader is referred to [1].

Concluding the paper I would like to remark that the Integral Theorem can be
applied with a success in some cases where in a proof is used the Stokes theorem.
Sometimes it leads to a generalization of results because on the contrary to the Stokes
theorem it is nothing assumed on the boundary of a compact set K.
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