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1989 ACTA UNIVERSITATIS CAROLINAE—MATHEMATICA ET PHYSICA VOL. 30. NO. 2 

An Integral Theorem and its Applications to Coincidence Theorems 

W. KULPA 

Katowice*) 

Received 15 March 1989 

The purpose of this note is to give an elementary proof of a special case of the 
Stokes theorem. The theorem presented here is called "Integral Theorem". As an 
application of the theorem one can obtain an analytical proof of the Brouwer fixed 
point theorem, a non-retraction theorem and other classical results. 

For any natural number n > 1 let P = P(n) be the set of all permutations of the 
natural numbers 1,..., n and let 5(a), where a = (<xl9..., a„) e P, means the sign of a, 

s(a) : = 11 (sgn (a; ~ a*): ' < h hj = 1,..-, n) . 

Assume that h: U -> IR\ h = (hu ..., hn), is a difFerentiable map from an open 
set U cz R\ Recall that the Jacobian det h'(x) is equal 

deth'(x):=Ys(«)(^ £A(x) 
aeP \dxai dxj 

Lemma 1. If h: U -> Un, n > 1, is a map of class C2 from an open set U c IR", 
then for each point x e U the following equality holds 

det *'(x) - I S(«)-i. (*»!-- |M(x). 
«p 8xai\ dxX2 dxj 

Proof. Let us calculate 

IiS(0L)±.(hl^l ^•Vx) = SS(«)( /^i ^)(x) + 
«P dxai\ dxai dxj «P V5 x«. dxJ 

+ Z <•) Ux) Y~(p- j±) 00 = det *'(*) + A.(x) r(x) , 
**p dxai \dxa2 dxj 

where 

(1) rl-Zto—l^ —V 
asp dxXl \dxai dxj 

*) Uniwersytet Slaski, Instytut Matematyki, ul. Bankowa 14, 40 007 Katowice, Poland 
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In order to prove the lemma it suffices to show that r = 0. Let us note that 

d2h2 3A, dh. (2) __./_[_ i_V\ = 
dxxi \dx_2 dxj дха1дха2 дхаз дха 

ôh2 дhя-t õ2hn 

d*a2 d**n-_ ^aidxan 

Define 

(з) Щ 
_ ÕҺ2 ÔҺІ-! 

дxaг дx_t_t 

Õ% Õhi+l 

дx_tдxвt дxЯì+l 

ć__ 

' ' дx*„ 

We have 

(4) 
д íдh2 

дxai \õxai 
....Щ-ir. 

дx_J í = 2 
and hence 

(5) r = £s(a)£Я? = £ £s(a)Я?. 

For each i = 2,..., n let us define a bijection Xt: P — P, 

(6) Xfl = P<> fl± = a,, Pi = a_ &fij = aj for j * 1, i. 

From definition of the function 5 it follows that 

(7) s(Xfl) = -s(a) 

Applying the Schwarz theorem on mixed derivatives: 

d2h d2h 

dxt dxj dxj dxt 

we get 

(8) H\ia = HI . 

From (7) and (8) we obtain 

2 £ s(«) ff? = £ s(«) if? + £ s{kfl) H)« = 
aeP aei> aeP 

= £ [s(a) + s(Xfl)] Hx
t = £ [s(«) - s(«)] H? = 0 . 

aeP aeP 

In virtue of (5) and from the above we infer that r = 0. 
Integral Theorem. Let f, g: U -> H3n be maps of class C2 from an open set U c D3\ 

Assume that K c U is a compact set such that f | Bd K = g | Bd K. Then 

J__ detf'(x) dx = J__ det g'(x) dx . 

84 



Proof. (I) n = 1. Let K c R be a compact set satisfying the assumptions of the 
Integral Theorem. At first, let us observe that if x e Bd K is a non-isolated point 
in the boundary of the set K then f'(x) = g'(x). Indeed, choose points xn e Bd K \ {x} 
such that xn -* x whenever n -> co. Since f(x) = #(x) and f(xn) = g(xn) for all 
n = 1, 2 , . . . , we get 

/'(x) = iim / i H W = lim «(*) - g(*») = ^ . 
n-*oo X — X n «-+oo X — X n 

The interior of the set K is of the form 

IntK = [){(an,bn):neA}, 
where .A is a subset of the set of natural numbers and the intervals (an, bn) are convex 
components of IntK (and so they are mutually disjoint). Since K is a compact set, 
we havef(art) = g(an) andf(b..) = g(b„) for each n e A, and in consequence 

£/'(*)<-* = £*'(*)<-* 
and the above implies that 

SKf'(x) dx = $K g'(x) dx 

because the set of all isolated points in Bd K is at most countable. 
(II) n > 1. Let K c U be a compact subset of an open set U c Rn and assume 

that h = (hl9..., hn): U -> Un is a map of class C2. Define 

(1) l(h1,...,hn):=SKdeth'(x)dx. 

From properties of determinant it follows that 

(2) I(h1,...,hn) = s(a)l(hai,...,hj for all aeP. 

According to lemma 1 we get 

(3) I(hl,...,hn)=[ ZsW^-fh^ !^)Mdx. 
)K*ep dxai\ dxa2 dxj 

Now, we shall verify that if gt: U -> IR is a function of class C2 such that 
h1 |BdK = g! |BdK then 

(4) l(hu...Jin)=l(guh2,...,hn). 

Indeed, let (xi9y)eUt x R""1, Rf = IR, means a point (xl9..., xi9 ...9xn)eUn 

and let tf£: IR" -> IR""1 be the projection; tfi(xf, yt) = >;,. = (x l5..., xt-u x,+ 1 , . . . 
..., x„). Define 

K(yt):= { x . e R j i ^ h J e i ? } . 

Since K is a compact subset of IR", the set K(y() is a compact subset of IR, and 
hi(xi9 yt) = gi(xf, ĵ j) for each point xt e Bd K(y(). According to part (I) the following 
equality holds for each a e P 
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(5) 

г д (, ÕҺ2 ÕҺЛ, ч , 

J «(!«,) ð * « Л ð*«2
 ð*«»/ 

f д I õh2 дhЛ, . . 
T - í ŕ - T - 1 т-Ł)(*-J'«,)dx«1. 

J«л,)ð*». V ð*«2
 ð*«J 

From the above and the Fubini theorem we get 

'(ft..*. *J-f S^Z-ffcir1 jr)(*)*"° 

= I s(«) f dj,, f --- (*, J-i &) (xai, yj d*.. = 
«-*• JJI«,(K) Jjc(n.,)dx«i V S*.2 «*«,/ 

= Is(«)f d,J / - f ^ f%.,,;Od*.,= 

«eP J j c 3 x a i V 3xa2 ax a n / 

Now, assuming that/1 Bd K = 0 | Bd K we get the following sequence of equalities 
(4) (2) 

JKdet/'(x)dx = I(fl9f29 ...,/„) = I(gl9f29...,/,) = 
(4) (2) 

- I(fi>9i>f3> •••>/») = -I(9i>9\>fz> •••>/„) = 
(2),(4) 

I(9i>92>f3>--->fn) = ••• =l(9i>92>'-;9n) = jit det #'(*) dx . 

The proof is completed. 
In this part we shall give some applications of the Integral Theorem to fixed point 

theory. For this purpose let us introduce some definitions and notations. 
Let B := {xelRn: |x| = 1} be the unit ball and let S = Bdfl, S = {xeUT: 

|x| = 1} be the boundary of the ball B. 
A map f:B-*Bis said to be a C* map, 0 _̂  i g 00, if there exists an open set 

U c R", B a U9 and a map / : U -> Rn of class Cl such that / 1 B = / . 
A map <p: S -> 5 is said to be a Cl

B map, 0 g i ^ 00, if there exists a C1 map 
cp:B -* B such that <p | 5 = <p. 

A continuous map <p: S -+ S has the B-coincidence property if for each pair 
f9g: B -+ B of continuous maps, where / 1 S = <p9 there exists a point x e B such 
that g(x) = / (x) . 

Lemma 2. Let <p: 5 -• S be a Cj, map for some i, 0 ^ i = 00. Then the following 
conditions are equivalent: 

(i) The exists no C1 map/: B -> B such that/1 S = <p and/(B) c S. 

(ii) The map <p has the B-coincidence property, 

(iii) Each continuous map/: B -> B such t h a t / | S = q>9 is "onto". 
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The proof of the lemma is routine. For completness it will be presented here. Let 
us precede it by some remark on a retraction operation. Describe a map, which each 
pair a, be B of distinct points assigns a unique point ce S such that the points 
a, b, c lie on the same line between a and c. It means that there exists a unique number 
t j> 0 satisfying the following equation 

la + tv\ = 1 where v = - . 

For each two points x = (x l f . . . , xn), y = (yu..., yn) e Un let xy denotes the scalar 

product xy = x^i + ... + x„yn. We have 

1 = \a + tv\ = aa + 2t av + t2vv . 

Since vv = \v\2 = 1 and |a|2 = aa, we get 

t2 + 2t av - 1 + a2 = 0 

t =a t ; -V[ i -H 2 -M 2 ] -
Define 

R(a, b):= a + tv 
where 

fc- a 
t = av - y/[l - \a\2 - (av)2] and v = 

\b-a\ 

From the above it follows that if f, a: U -» Rn, U cz R", are continuous maps such 
that f(x) =)= a(x) for all x e U, then the map 

r(x) := *(*(*)./(*)) 

is continuous and has the following properties: 

(a) If a(x),f(x)eB then r(x)eS. 
(b) If f(x)eS then r(x) = f(x). 
(c) If g,f are of class C1 then r is of class Cl, too, for i = 0,..., co. 

Proof of lemma 2. (i) => (ii). Suppose that g(x) 4= f(x) for all xeB. The com­
pactness of B implies that there exists an e > 0 such that |g(x) — f(x)| ^ e for all 
x e B. Put S = e/4. According to the Weierstrass theorem there exists a polynomial 
px: Un -> R" such that |a(x) - Pi(x)| < 8 for all xeB. Let us put p(x) : = 
:= Pi(x)/(1 + (5). Then p(B) c B and \g(x) - p(x)| < 25 for all xeB, and in 
consequence p(x) #f(x) for all xeB. Now, define r: B -+ B, r(x) := R(p(x),f(x)). 
Properties (a), (b), (c) imply that the map is a Cf map, <p = f | S = r | S and r(B) cz 
a S, contradicting (i). 

(ii) => (iii). Suppose that there exists a point aeB\f(B). Define s: B -> B, 
s(x) := —R(a,f(x)). According to properties (a), (b), (c) the map s: B -> S is con-
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tinuous and s(x) = -f(x) whenever f(x) e S. Thus s(x) =t= f(x) for all xeB9 which 
is in contradiction with (ii). 

(iii) => (i). Obvious. 
Recall the following coincidence theorem due to H. Schirmer [5]: 
Let f9g: B -> B be continuous maps such that f(S) c S and f | S: S -> S is not 

nullhomotopic. Then there exists a point xeB such that g(x) = f(x). 
Observe that the implication (i) => (ii) yields Schirmer's theorem. In our termi­

nology the mentioned theorem means that if f | S is not nullhomotopic then f | S 
has the ^-coincidence property. 

Indeed, iff| S has not the ^-coincidence property then there exists a continuous 
map h:B-+ S such that h \ B = f | S. The map H: S x [0,1] -> S, H(x91) = h(tx) 
accomplishes a homotopy between f | S and the constant map H(x9 0) = h(0). 

Conversely, each continuous map H: S x [0, 1] -> S such that H(x91) = f(x) 
and H(x9 0) = c for all x e S, induces a continuous map h: B -> S; h(x) : = 
:= H(-R(0, x), |x|) for x e £ \ { 0 } and h(0) := c, such that h | S =f | S. Thus we 
have got the following 

Observation. A continuous map <p: S -> S has the J5-coincidence property if and 
only if it is not nullhomotopic. 

Lemma 3. Assume that <p: S -> S is a C\ map. If there exists a C2 map h: B -+ B9 

<p = h | S, such that det /i'(x) 4= 0 for some point x e Int B, then <p has the B-
coincidence property. 

Proof. In view of lemma 2(i) it suffices to show that there is no C2 map f: B -> S, 
f = (fi9 ...,fw), such thatf | S = q>. Suppose that such a map exists. Since f(B) c= S 
we have 

£f2(x) = 1 for all xeB 
i = l 

so that for all x e Int B and j = 1, ..., n 

i2^(x)f/x)~0. 
i=l OXj 

This implies that 
detf'(x) = 0 for all x e Int B , 

Another proof one can get immediately from the inverse function theorem which 
tells us that if detf'(x) =)= 0 for some x e Int B then Intf(B) * 0. 

Now we shall show how to apply the Integral Theorem to discern that a C\ map 
cp: S -> S has the B-coincidence property. 

Proposition. Let <p: S -> S be a C\ map. If there exists a C2 map h: B -> £ such 
that <p = fc | S and 

JB det h'(x) dx 4= 0 

then <p has the B-coincidence property. 
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Proof. Let / : B -> B be a C2 map such that f\S = h\S. From the Integral 
Theorem it follows that JB detf'(x) dx =# 0. Hence there exists a point xelntB 
such that detf'(x) #= 0. Applying lemma 2 we infer that <p has the H-coincidence 
property. 

In the case when h = identity from Proposition we get 

Corollary 1. (Bohl-Brouwer fixed point theorem.) Each continuous map g: B -> B 
has a fixed point. 

Corollary 2. (Non-retraction theorem.) Let K c IRn be a compact set. Then each 
continuous map m:K -> K such that m(x) = x for all x e Bd K9 is "onto". 

Proof. Choose an r > 0 such that K cz Br9 where 2?r = {x: \x\ ^ r} and let us 
define M: Br -» Br, M(x) = m(x) for x e K and M(x) = x for x e Br \ K. The map M 
is continuous and M | Bd Br = identity. Applying Proposition to h = identity 
we infer that condition (ii) of lemma 1 holds and, in consequence, the map M: Br-> Br 

must be "onto". Hence m(K) = K. 
Analytical proofs of the non-retraction theorem or the Bohl-Brouwer theorem one 

can find in [2], [3] and [4]. 
Another application of Proposition is a new proof of the fundamental theorem of 

algebra 
Every cpmplex non-constant polynomial 

p(z) = zm + a^™'1 + ... + am has a zero . 

Indeed, let us put 

r:= 1 + \ax\ + . . . + \am\ 

f(z) := 1 (rz)- = z™9 g(z) : = =1 [ a ^ r Z ) - 1 + ... + am] . 

One can verify thatf(B) c B9f(S) cz S and g(B) c B. From the Cauchy-Riemann 
equations for holomorphic functions we get 

det / ' (z) = | / ' (Y)|2 . 
This implies that 

jfldetf'(Z)dZ > 0 . 

According to Proposition there exists a point zeB such that f(z) = g(z). But this 
is equivalent to p(z) = 0. 

The above method can be also adopted to prove the fundamental theorems of 
algebra for quaternions and Cayley numbers. For details the reader is referred to [1]. 

Concluding the paper I would like to remark that the Integral Theorem can be 
applied with a success in some cases where in a proof is used the Stokes theorem. 
Sometimes it leads to a generalization of results because on the contrary to the Stokes 
theorem it is nothing assumed on the boundary of a compact set K. 
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