EQUADIFF 4

H. Gamkrelidze
 Exponential representation of solutions of ordinary differential equations

In: Jiří Fábera (ed.): Equadiff IV, Czechoslovak Conference on Differential Equations and Their Applications. Proceedings, Prague, August 22-26, 1977. Springer-Verlag, Berlin, 1979. Lecture Notes in Mathematics, 703. pp. [118]--129.

Persistent URL:
http://dml.cz/dmlcz/702211

Terms of use:

© Springer-Verlag, 1979

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

EXPONENTIAL REPRESENTATION OF SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

R. Gamkrelidze, Moscow

I shall describe here a kind of calculus for solutions of ordinary differential equations deveioped jointly with my collaborator A.Agrachev. This calculus is based on the exponential representation of the solutions and reflects their most general group-theoretic properties. In deriving the calculus we were strongly influenced by problems of control and optimization and it is shaped according to the needs of these theories. Nevertheless it might be considered, as I believe, not merely as a technical tool for dealing with control problems only but could also be of more general interest. This may justify my choice of the topic for the Equadiff conference.

1. Differential equations considered

Let us consider a differential equation in \mathbb{R}^{n}

$$
\begin{equation*}
\dot{z}=x_{t}(z) \tag{1}
\end{equation*}
$$

where $X_{t}(z)$ is a c^{∞}-function in $z \in \mathbb{R}^{n}$ for $\forall t \in \mathbb{R}$, measurable in t for $\forall z \in \mathbb{R}^{n}$ and satisfying the condition

$$
\begin{equation*}
\left\|x_{t}\right\|_{k} \leq \mu_{k}(t), \quad \int_{\mathbb{R}} \mu_{k}(t) d t<\infty, k=0,1, \ldots \tag{2}
\end{equation*}
$$

where $\|\cdot\|_{k}$ denotes the norm of the uniform convergence in \mathbb{R}^{n} up to the k-th derivative.

Our first goal is to find a suitable representation of the flow defined by (1), that is, of a family of C^{∞}-diffeomorphisms F_{t}, $t \in \mathbb{R}$, of \mathbb{R}^{n} satisfying the equation

$$
\begin{equation*}
\frac{d}{d t} F_{t} x=X_{t}\left(F_{t} x\right), F_{0}=I d \quad \forall x \in \mathbb{R}^{n} . \tag{3}
\end{equation*}
$$

The existence of F_{t} is guaranteed by (2).
2. Transforming (3) into a linear "operator equation"

There is a procedure transforming the nonlinear equation (3) into a certain linear "operator equation" for F_{t}. To describe it let me introduce some standard notions.
Φ_{n} will denote the algebra of all c^{∞}-scalar functions f, g, \ldots on \mathbb{R}^{n} with the topology of the uniform convergence on compact sets for every derivative. of stands for the associative algebra
of all continuous linear transformations of Φ. The composition of two elements A_{1}, A_{2} in A will be denoted by $A_{1} \circ A_{2}$. The operators from A^{1} can be applied also to vector-valued functions on $\mathbb{R}^{\mathbf{n}}$. Denote by θ the identity mapping of $\mathbb{R}^{\mathbf{n}}: \theta(x) \equiv \mathbf{x}$. We shall say that a sequence of operators A_{1}, A_{2}, \ldots from it is convergent to A iff the sequence of functions $A_{1} \theta, A_{2} \theta, \ldots$ converges in Φ to $A O$. Every diffeomorphism F of $\mathbb{R}^{n^{2}}$ will be considered as an element of $A: F f(x)=f(F x), \quad \forall x \in \mathbb{R}^{n}$, and the set of all C^{∞}-diffeomorphisms of \mathbb{R}^{n} will be denoted by \mathscr{D}. By \mathscr{Z} we shall denote the Lie algebra of all C^{∞}-vector fields on \mathbb{R}^{n}, which is a subspace of of characterized by the differentiation rule $X(f g)=(X f) g+f(X g) \quad \forall x \in \mathscr{L}, \forall f, g \in \Phi$. The Lie bracket of two fields will be denoted as usual by $[X, Y]=X \circ Y-Y o X=$ $=$ (ad X)Y. The following important relation holds:

$$
\begin{equation*}
F \circ X_{0} F^{-1} \stackrel{\text { def }}{=}(\operatorname{Ad} F) X \in \mathscr{L} \forall X \in \mathscr{L}, \forall F \in D \tag{4}
\end{equation*}
$$

Consider $X_{t}, t \in \mathbb{R}$, in (1) as a nonstationary (time-dependent) vector field on \mathbb{R}^{n}. It is not difficult to show that (3) is equivalent to the linear "operator equation" for the flow F_{t}

$$
\begin{equation*}
\frac{d}{d t} F_{t}=F_{t} \circ X_{t}, \quad F_{0}=I d \Leftrightarrow F_{t}=I d+\int_{0}^{t} F_{\tau} \circ X_{\tau} d \tau, \tag{5}
\end{equation*}
$$

where the operations of differentiation and integration in t should be understood in the "weak" sense: first apply the operator to an arbitrary function from Φ and then differentiate or integrate. The equivalence between (3) and (5) should be understood literally - the existence of a unique solution of (3) implies the existence of a unique solution $F_{t}, t \in \mathbb{R}$, for (5) which at the same time necessarily turns out to be a flow and vice versa. Certainly we can always consider the flow F_{t} only for values of t sufficiently close to zero since the equation $F_{t}=F_{t_{0}}+\int_{t_{0}}^{t^{\prime}} F_{\tau} \circ X_{\tau} d \tau, t_{0}-$ arbitrary fixed, has exactly the same properties as (5), which permits to restore the whole flow $F_{t}, t \in \mathbb{R}$.

Call the formal series
(6)

$$
I d+\sum_{i=1}^{\infty} \int_{0}^{t} d \tau_{1} \int_{0}^{\tau_{1}} d \tau_{2} \ldots \int_{0}^{\tau_{i-1}} d \tau_{i} x_{\tau_{i}^{\circ}} x_{\tau_{i-1}} \ldots .0 x_{\tau_{1}},
$$

arising when solving the linear equation (5) formally, the Volterra
series corresponding to (5).
3. Exponential representation of the flow

Suppose the field X_{t} analytic on \mathbb{C}^{n} and subject to the condition (2), where the norms $\|\cdot\|_{k}$ should be understood (in this case) as norms of the uniform convergence in a certain complex $\sigma_{k}-$ -neighbourhood $\left(\sigma_{k}>0\right)$ of $\mathbb{R}^{n} \subset \mathbb{C}^{n}$. Then the Volterra series (6) converges (in the above defined sense) for every t rendering the integral $\int_{0}^{t} \mu_{0}(\tau) \mathrm{d} \tau$ a sufficiently small value to an analytic diffeomorphism $X_{r} \mapsto \mathrm{~F}_{\mathrm{t}} \mathrm{X}$, and the obtained flow is the unique solution of the equation (5) (proof by the method of majorants).

The fields X_{t} generally do not commute for different values of $t_{\tau_{i-1}}^{t}$, hence the order of the factors in the term $\int_{0}^{t} d \tau_{1} \int_{0}^{\tau_{1}} d \tau_{2} \ldots$ $\ldots \int_{0}^{\tau_{i-1}} d \tau_{i} x_{\tau_{i}} \cdots x_{\tau_{1}}$ could not be changed and the corresponding
times τ_{j} increase from left to right: $0 \leq \tau_{i} \leq \ldots \leq \tau_{1} \leq t$. Adopting the terminology used by physicists we call the flow F_{t} to which the series (6) converges the right chronological exponent of X_{t} and denote it by

$$
\begin{equation*}
F_{t}=\overrightarrow{\exp } \int_{0}^{t} x_{\tau} d \tau \tag{7}
\end{equation*}
$$

the arrow indicating the direction of growth of the $\tau_{j}-\mathbf{s}$ in the successive terms of the "right" Volterra series (6).

In the general C^{∞}-case the series (6) is not convergent, however, we can call the unique solution of (5) (which exists and is a flow according to the standard existence theorem for (3)) the right chronological exponent of X_{t} and denote it with the same symbol (7). The following basic asymptotics may justify this convention:

$$
\begin{aligned}
& \|\left\{\overrightarrow{\exp } \int_{0}^{t_{1}} x_{\tau} d \tau-\left(I d+\sum_{i=1}^{k} \int_{0}^{t} d \tau_{1} \int_{0}^{\tau_{1}} d \tau_{2} \cdots \int_{0}^{\tau_{i-1}} d \tau_{i} x_{\tau_{i}}^{0}\right.\right. \\
& \left.\left.\ldots \circ x_{\tau_{1}}\right)\right\} f\left\|_{Q, 0} \leq c_{Q, k}\left(\int_{0}^{t}\left\|x_{\tau}\right\|_{\hat{Q}, k+1} d \tau\right)^{k+1}\right\|_{f} \|_{\hat{Q}, k+1} \quad \forall f \in \Phi, \\
& k=1,2, \ldots,
\end{aligned}
$$

where $\|\cdot\|_{Q, j}, j=0,1,2, \ldots$ denotes here and in the sequel the norm of the uniform convergence of all derivatives up to the order j on an arbitrary compact set $Q \in \mathbb{R}^{\mathbf{n}}, \hat{Q}$ - a compact neighbourhood of Q of radius $\int_{0}^{t_{0}} \mu_{0}(\tau) d \tau$.

However, we can go even further in interpreting the symbol (7) and describe a sort of "summation procedure" which enables us to "sum up" the Volterra series (6) in the general C^{∞}-case to a family of operators F_{t} which turns out to be a flow satisfying the equation (5), and thus give an existence proof for (5). Uniqueness is an easy consequence of the fact that F_{t} is a flow.

To describe the "summation procedure" take the " δ-type" analytic mollifier

$$
\omega_{\varepsilon}=\frac{1}{(\sqrt{\pi} \varepsilon)^{n}} e^{-\left(\frac{z}{\varepsilon}\right)^{2}} \quad(\varepsilon \rightarrow 0)
$$

and consider the convolution

$$
x_{t}^{(\varepsilon)}(z)=\omega_{\varepsilon} * x_{t}=\frac{1}{\left(\sqrt{\pi} \varepsilon_{-}\right)^{n}} \int_{\mathbb{R}^{n}} e^{-\left(\frac{z-w}{\varepsilon}\right)^{2}} x_{t}(w) d w
$$

The obtained field $X_{t}^{(\varepsilon)}$ is an entire-analytic field on $\mathbb{1}^{\mathbf{n}}$ for every $\mathcal{L}>0$ subject to (2) (up to a constant factor for $\mu_{k}(t)$), thus the corresponding Volterra series is convergent to a flow $F_{t}^{(\varepsilon)}$ which satisfies the equation (5). It turns out that $F_{t}^{(\xi)}$ $(\varepsilon \rightarrow 0)$ is a Cauchy family of flows (in the topology of the uniform convergence on compact sets of $\mathbb{R}^{\boldsymbol{n}}$ for every derivative) and converges to a flow F_{t} which is the unique solution of (5). We consider the flow $F_{t}, t \in \mathbb{R}$ as the "generalized sum" of the right Volterra series (6) and call it the right chronological exponent of X_{t} :

$$
\frac{d}{d t} \overrightarrow{\exp } \int_{0}^{t_{0}} x_{\tau} d \tau=\overrightarrow{\exp } \int_{0}^{t_{\tau}} x_{\tau} d \tau \circ x_{t}
$$

The left Volterra series and the corresponding left chronological exponent could be considered in a completely symmetrical way

$$
\begin{aligned}
& G_{t}=\overleftarrow{e x p} \int_{0}^{t_{1}} x_{\tau} d \tau=I d+\sum_{i=1}^{\infty} \int_{0}^{t_{1}} d \tau_{1} \int_{0}^{\tau_{1}} d \tau_{2} \ldots \int_{0}^{\tau_{i-1}} d \tau_{i} x_{\tau_{1}}^{0} \\
& \ldots o x_{\tau_{i}}
\end{aligned}
$$

The flow $\begin{aligned} & \text { exp } \\ & \text { for (5) }\end{aligned} \int_{0}^{\mathrm{t}}-\mathrm{X}_{\tau} \mathrm{d} \tau$ satisfies the "adjoint operator equation"

$$
\frac{d}{d t} G_{t}=-X_{t} \circ G_{t}, \quad G_{0}=I d,
$$

which is equivalent to the linear partial differential equation of the first order in \mathbb{R}^{n}

$$
\frac{\partial w(t, x)}{\partial t}+\sum_{i=1}^{n} x_{t}^{i}(x) \frac{\partial w\left(\frac{t}{i} x\right)}{\partial x^{i}}=\frac{\partial w}{\partial t}+x_{t} w=0,
$$

$\omega(t, x)=G_{t} f(x), f(x)=G_{o} f(x)=\omega(0, x)$ - the initial function. Evidently

$$
\overrightarrow{\exp } \int_{0}^{\mathrm{t}} \mathrm{x}_{\tau} d \tau \circ \stackrel{\exp }{ } \int_{0}^{\mathrm{t}}-\mathrm{x}_{\tau} \mathrm{d} \tau=\overleftarrow{\exp } \int_{0}^{\mathrm{t}}-\mathrm{X}_{\tau} \mathrm{d} \tau \circ \stackrel{\mathrm{exp}}{ } \int_{0}^{\mathrm{t}} \mathbf{x}_{\tau} d \tau=I \mathrm{~d}
$$

In the "commutative case" that is if $\left[X_{t}, \int_{0}^{t} x_{\tau} d \tau\right]=0$
$\forall t \in \mathbb{R}$ we have

$$
\begin{aligned}
\overrightarrow{\exp } \int_{0}^{\mathrm{t}} \mathrm{x}_{\tau} \mathrm{d} \tau & =\stackrel{\leftarrow}{\exp } \int_{0}^{\mathrm{t}} \int_{\tau} \mathrm{x}_{\tau} \mathrm{d} \tau=I d+\sum_{i=1}^{\infty} \frac{1}{i!}\left(\int_{0}^{\mathrm{t}} \mathrm{x}_{\tau} \mathrm{d} \tau\right)^{i}= \\
& =e^{\mathbf{x}_{\tau} d \tau}
\end{aligned}
$$

For example, if $X_{t} \equiv X$ then $\overrightarrow{\exp } \int_{0}^{t} x_{\tau} d \tau=e^{t X}$.
To demonstrate the flexibility of the obtained representation I shall derive formulas expressing two basic objects in the theory of ordinary differential equations - the perturbing flow of a given flow F_{t} and the variation of F_{t}.
4. The perturbing flow

Suppose the field X_{t} and the corresponding flow $F_{t}=$ $=\overrightarrow{\exp } \int_{0}^{\mathrm{t}} \mathrm{x}_{\tau} \mathrm{d} \tau$ fixed. Call an arbitrary field y_{t} a perturbing field for X_{t}, the flow $\overrightarrow{\exp } \int_{0}^{t}\left(X_{\tau}+Y_{\tau}\right) d \tau$ - the corresponding
perturbed flow.

Problem. Find a flow $C_{t}=C_{t}\left(Y_{\tau}\right)$ satisfying the equation

$$
\begin{equation*}
\overrightarrow{\exp } \int_{0}^{t}\left(X_{\tau}+Y_{\tau}\right) d \tau=c_{t}\left(Y_{\tau}\right) \circ \overrightarrow{\exp } \int_{0}^{t} X_{\tau} d \tau=c_{t}\left(Y_{\tau}\right) \circ F_{t} \tag{8}
\end{equation*}
$$

We call $C_{t}\left(Y_{\tau}\right)$ the perturbing flow for F_{t} corresponding to Y_{t}. The proposed solution coincides with the method of variation of constants and could be carried out as follows. According to (4) we can consider Ad F_{t} in the formula

$$
\begin{equation*}
\left(\operatorname{Ad} F_{t}\right) Z=F_{t} \circ Z \circ F_{t}^{-1}, \quad Z \in \mathscr{L}, \tag{9}
\end{equation*}
$$

as a time-dependent linear transformation of \mathscr{L}. Differentiating we obtain the equation

$$
\frac{d}{d t} \operatorname{Ad} F_{t}=\operatorname{Ad} F_{t} 0 a d X_{t},
$$

which suggests the notation

$$
\begin{equation*}
\operatorname{Ad} F_{t}=\overrightarrow{\exp } \int_{0}^{t} a d X_{\tau} d \tau \tag{10}
\end{equation*}
$$

Differentiation of (8) yields

$$
\frac{d}{d t} C_{t}\left(Y_{\tau}\right)=C_{t}\left(Y_{\tau}\right) \circ\left(\operatorname{Ad} F_{t}\right) Y_{t},
$$

whence combining (8) and (10) we come to formulas

$$
\begin{align*}
& C_{t}\left(Y_{\tau}\right)=\overrightarrow{\exp } \int_{0}^{t}\left(\operatorname{Ad} F_{\tau}\right) Y_{\tau} d \tau= \tag{11}\\
& =\overrightarrow{\exp } \int_{0}^{t}\left(\overrightarrow{\exp } \int_{0}^{\tau} \operatorname{ad} x_{s} d s\right) Y_{\tau} d \tau, \\
& \overrightarrow{\exp } \int_{0}^{t}\left(x_{\tau}+Y_{\tau}\right) d \tau=\overrightarrow{\exp } \int_{0}^{t}\left(\overrightarrow{\exp } \int_{0}^{\tau} a d X_{s} d s\right) Y_{\tau} d \tau{ }^{0} \\
& \quad \underset{\exp }{ } \int_{0} X_{\tau} d \tau,
\end{align*}
$$

asserting two basic facts. 1) If X_{t}, Y_{t} are analytic (in t and z) and satisfy (2) then evaluating all chronological exponents on the right sides as the corresponding formal right Volterra series and performing the indicated operations we come to convergent (in appropriate regions) series defining the flows standing on the left sides. 2) For the general C^{∞}-case the equalities (10)-(11) should be understood in the following asymptotic sense:

$$
\begin{array}{r}
\|\left\{\overrightarrow{\exp } \int_{0}^{\mathrm{t}} \text { ad } X_{\tau} d \tau-\left(I d+\sum_{i=1}^{k} \int_{0}^{t} d \tau_{1} \int_{0}^{\tau_{1}} d \tau_{2} \ldots \int_{0}^{\tau_{i-1}} d \tau_{i} \text { ad } x_{\tau_{i}} \circ \ldots\right.\right. \\
\left.\left.\ldots \text { ad } X_{\tau_{1}}\right)\right\} z\left\|_{Q, 0} \leq C_{Q, k}\left(\int_{0}^{t}\left\|x_{\tau}\right\| \hat{Q}, k+1^{d \tau}\right)^{k+1}\right\|_{z} \|_{\hat{Q}, k+1} \quad \forall z \in \mathscr{L}, \\
k=1,2, \ldots ;
\end{array}
$$

$\| \overrightarrow{\exp } \int_{0}^{t_{f}}\left(X_{\tau}+Y_{\tau}\right) d \tau-\left(I d+\sum_{i=1}^{k} \int_{0_{t_{p}}}^{t_{1}} d \tau_{1} \int_{0}^{\tau} d \tau_{2} \ldots \int_{0}^{\tau_{i-1}} d \tau_{i}\left(\operatorname{Ad} F_{\tau_{i}}\right)\right.$
.$\left.Y_{\tau_{i}} \ldots \circ\left(\operatorname{Ad} F_{\tau_{1}}\right) Y_{\tau_{1}}\right) \circ F_{t} \|_{Q, o} \leq C_{Q, k}\left(\int_{0}\left\|F_{\tau}^{-1}\right\|_{\hat{Q, k+1}}\left\|Y_{\tau}\right\| \hat{Q}, k^{d} \tau\right)^{k+1}$
$\left\|F_{t}\right\|_{\hat{Q}, k+1}$ - In case of time independent fields $X_{t} \equiv X, Y_{t} \equiv Y$ we have $e^{t X} o Z c e^{-t X}=e^{t \text { ad } X} Z, e^{t(X+Y)}=\overrightarrow{e x p} \int_{0}^{t} e^{\tau a d X} Y d \tau \circ e^{t X}$.

The second formula shows that even if the fields X, Y are time--independent the corresponding perturbing flow is expressed through a chronological exponent.

Consider a flow $F_{t}=\overrightarrow{\exp } \int_{0}^{t_{T}} Y_{\tau}^{(1)} d \tau \circ \ldots \circ \overrightarrow{\exp } \int_{0}^{t_{r}} Y_{\tau}^{(m)} d \tau$
and suppose we have to define the field Z_{t} that generates F_{t} : $F_{t}=\overrightarrow{\exp } \int_{0}^{t} z_{\tau} d \tau$. We call z_{t} the right chronological logarithm of F_{t} and denote $Z_{t}=\overrightarrow{\log } F_{t}$. It is expressed by (see (9)-(10))

$$
\begin{align*}
& \overrightarrow{\log }\left(\overrightarrow{\exp } \int_{0}^{t_{\tau}} Y_{\tau}^{(I)} \mathrm{d} \tau \circ \ldots 0 \overrightarrow{\exp } \int_{0}^{\mathrm{t}} Y_{\tau}^{(m)} \mathrm{d} \tau\right) \xrightarrow[=]{\text { def }} \tag{12}\\
& \stackrel{\operatorname{def}}{=} \lambda\left(Y_{\tau}^{(1)}, \ldots, Y_{\tau}^{(m)}\right)=F_{t}^{-1} \circ \frac{d}{d t} F_{t}= \\
& =\left(\overleftarrow{\exp } \int_{0}^{t_{0}}-\operatorname{ad} Y_{\tau}^{(m)} \mathrm{d} \tau \circ \ldots \circ \stackrel{\leftarrow}{\exp } \int_{0}^{t_{0}}-a d Y_{\tau}^{(2)} \mathrm{d} \tau\right) Y_{t}^{(1)}+ \\
& +\left(\overleftarrow{\exp } \int_{0}^{t_{0}}-\operatorname{ad} Y_{\tau}^{(m)} \mathrm{d} \tau c \ldots o \overleftarrow{\exp } \int_{0}^{t_{0}^{0}}-\operatorname{ad} Y_{\tau}^{(3)} d \tau\right) Y_{t}^{(2)}+ \\
& +\ldots+\left(\stackrel{\leftarrow}{\exp } \int_{0}^{t_{0}}-\operatorname{ad} Y_{\tau}^{(m)} d \tau\right) Y_{t}^{(m-1)}+Y_{t}^{(m)} .
\end{align*}
$$

5. The variation of a flow

We start with the following problem. For a given flow $\hat{\mathrm{F}}_{\mathrm{t}}=$ $=\overrightarrow{\exp } \int_{0}^{t_{r}} Y_{\tau} d \tau$ determine a field $V_{t}\left(Y_{\tau}\right)$ which satisfies in an appropriate asymptotic sense (to be formulated precisely) the relation

$$
\overrightarrow{\exp } \int_{0}^{t} Y_{\tau} d \tau \cong e^{V_{t}\left(Y_{\tau}\right)}=I d+\sum_{i=1}^{\infty} \frac{1}{i!}\left(V_{t}\left(Y_{\tau}\right)\right)^{i} .
$$

It is natural to call $V_{t}\left(Y_{\tau}\right)$ the usual (not chronological) logarithm of the flow considered and to denote

$$
v_{t}\left(Y_{\tau}\right)=\ln \overrightarrow{e x p} \int_{0}^{t} Y_{\tau} d \tau
$$

For a precise formulation we have to consider noncommutative nonassociative polynomials over $\mathbb{R}, P\left(Y_{1}, \ldots, Y_{k}\right)$ in $k=1,2, \ldots$ \mathscr{L} - valued variables Y_{i} with the Lie bracket multiplication; the P-s consequently will also be \mathscr{L} - valued. A simple and explicit algorithm (see $n^{\circ} 6$) prescribes a universal sequence of such polynomials
(13)

$$
P_{1}\left(Y_{1}\right), \quad P_{2}\left(Y_{1}, Y_{2}\right), \ldots, P_{k}\left(Y_{1}, \ldots, Y_{k}\right), \ldots,
$$

P_{k} - homogeneous of degree k in its variables, each variable having degree 1 , for which the following theorem is valid.

Theorem. For every field Y_{t} consider the formal series

$$
\begin{align*}
v_{t}\left(Y_{\tau}\right) & =\sum_{i=1}^{\infty} \int_{0}^{t} d \tau_{1} \int_{0}^{\tau_{1}} d \tau_{2} \ldots \int_{0}^{\tau_{i-1}} d \tau_{i} P_{i}\left(Y_{\tau_{1}}, \ldots, Y_{\tau_{i}}\right)= \tag{14}\\
& =\sum_{i=1}^{\infty} v_{t}^{(i)}\left(Y_{\tau}\right)
\end{align*}
$$

and call it the formal vector field associated with Y_{t}. Then the

$$
\begin{align*}
& \text { following asymptotics holds: } \\
& \text { (15) }\left\|\overrightarrow{\exp } \int_{0}^{\sum_{i=1}^{k} v_{t}^{(i)}\left(Y_{\tau}\right)}\right\|_{Q} d \tau-e^{t} \leq \tag{15}\\
& \leq C_{Q, k}\left(\int_{0}^{t}\left\|Y_{\tau}\right\|_{\hat{Q}, k+1} d \tau\right)^{k+1}, \quad k=1,2, \ldots,
\end{align*}
$$

also expressed by either of the relations

$$
\begin{align*}
& \ln \overrightarrow{\exp } \int_{0}^{t} Y_{\tau} d \tau \cong \sum_{i=1}^{\infty} V_{t}^{(i)}\left(Y_{\tau}\right)=V_{t}\left(Y_{\tau}\right), \tag{16}\\
& \overrightarrow{\exp } \int_{0}^{t} Y_{\tau} d \tau \cong e^{\sum_{i=1}^{\infty} V_{t}^{(i)}\left(Y_{\tau}\right)}=e^{V_{t}\left(Y_{\tau}\right)} .
\end{align*}
$$

As an immediate consequence of (15) we obtain

$$
\begin{align*}
& \left(V_{t}^{(i)}\left(Y_{\tau}\right)\right) x=0, i=1, \ldots, k-1 \Rightarrow\left(\overrightarrow{\exp } \int_{0}^{t} Y_{\tau} d \tau\right) x= \tag{17}\\
& =x+\left(V_{t}^{(k)}\left(Y_{\tau}\right)\right) x+\sigma\left(\int_{0}^{t}\left\|Y_{\tau}\right\|_{Q, k+1} d \tau\right)^{k+1} \forall x \in \mathbb{R}^{n}, \\
& k=1,2, \ldots .
\end{align*}
$$

Formulas (15), (17) justify the forthcoming terminology. Call the field $V_{t}^{(k)}\left(Y_{\tau}\right)$ the k-th variation of the identity flow $I d_{t}$ corresponding to Y_{t} - the perturbing field of the zero field (which generates the identity flow), and denote $V_{t}^{(k)}\left(Y_{\tau}\right)=\delta^{(k)} I d_{t}\left(Y_{\tau}\right)$. Similarly, call the formal field (14) the (full) variation $\delta I d_{t}\left(Y_{\tau}\right)$ of the identity flow

$$
\begin{equation*}
\delta \operatorname{Id}_{t}\left(Y_{\tau}\right)=\sum_{i=1}^{\infty} \delta^{(i)}{I d_{t}}\left(Y_{\tau}\right) \tag{18}
\end{equation*}
$$

and the formal series

$$
\begin{equation*}
e^{V_{t}\left(Y_{\tau}\right)}=I d+\sum_{i=1}^{\infty} \frac{1}{i!}\left(V_{t}\left(Y_{\tau}\right)\right)^{i} \tag{19}
\end{equation*}
$$

- the formal flow corresponding to the formal field $\mathrm{V}_{\mathrm{t}}\left(\mathrm{Y}_{\tau}\right)$. According to (14), (16) the following basic asymptotic expansion is valid:

$$
\begin{align*}
\overrightarrow{\exp } \int_{0}^{t} Y_{\tau} d \tau & \cong e^{V_{t}\left(Y_{\tau}\right)}=e^{\delta \operatorname{Id}_{t}\left(Y_{\tau}\right)}= \tag{20}\\
& =\operatorname{Id}+\sum_{i=1}^{\infty} \frac{1}{i!}\left(\delta \operatorname{Id}_{t}\left(Y_{\tau}\right)\right)^{i} \\
\delta \operatorname{Id}_{t}\left(Y_{\tau}\right) & =\sum_{i=1}^{\infty} \delta^{(i)} I d_{t}\left(Y_{\tau}\right)= \\
& =\sum_{i=1}^{\infty} \int_{0}^{t} d \tau_{I} \int_{0}^{\tau_{1}} d \tau_{2} \cdots \int_{0}^{i-1} d \tau_{i} P_{i}\left(Y_{\tau_{1}}, \ldots, Y_{\tau_{i}}\right)
\end{align*}
$$

We call it the "Maclaurin series expansion" (around the zero field) of the flow $\overrightarrow{\exp } \int_{0}^{t} Y_{\tau} d \tau$ - the perturbing flow for $I d_{t}$ under Y_{t}, which can be also regarded as the corresponding perturbed flow. A composition rule in the set of formal flows (19) defined by (see (12))

$$
e^{V_{t}\left(Y_{\tau}^{(1)}\right)} \circ e^{V_{t}\left(Y_{\tau}^{(2)}\right)}=e^{V_{t}\left(\lambda\left(Y_{\tau}^{(1)}, Y_{\tau}^{(2)}\right)\right)}
$$

turns it into a multiplicative group.

Unifying formulas (12), (20) (see also the construction of the $\left.P_{i}-s\right)$ we come to a generalization of the Campbell-Hausdorff formula
(21)

$$
\begin{aligned}
& \underset{\exp }{\longrightarrow} \int_{0}^{t} Y_{\tau}^{(1)} d \tau 0 \ldots \circ \overrightarrow{\exp } \int_{0}^{t} Y_{\tau}^{(m)} d \tau \cong \\
& \cong \sum_{i=1}^{\infty} \int_{0}^{t} d \tau_{1} \ldots \int_{0}^{\tau_{i-1}} d \tau_{i} P_{i}\left(Z_{\tau_{1}}, \ldots, Z_{\tau_{i}}\right) \\
& z_{t}=\left(\overleftarrow{\exp } \int_{0}^{t}-\operatorname{ad} Y_{\tau}^{(m)} d \tau c \ldots c \overleftarrow{\exp } \int_{0}^{t}-a d Y_{\tau}^{(2)} d \tau\right) Y_{t}^{(1)}+ \\
& \quad+\ldots+\left(\overleftarrow{\exp } \int_{0}^{t}-a d Y_{\tau}^{(m)} d \tau\right) Y_{t}^{(m-1)}+Y_{t}^{(m)} .
\end{aligned}
$$

The usual Dynkin form of this formula (when $Y_{t}^{(i)} \equiv Y, m=2, t=1$) seems to be unnecessarily complicated which results from the fact that it actually carries out all i-fold integrations indicated in (21). For analytic fields (both in t and z) all formal series involved in (18)-(21) are convergent provided the appropriate norms of the $Y_{t}-s$ are sufficiently small (I shall not go here into the details of precise formulation).

The crucial advantage of the introduced variations consists in the validity of the asymptotic relation (20) and in their invariant form - the $\delta^{(k)} I_{t}$-s are vector fields and thus belong to the first tangent bunde of the underlying space (in our case of \mathbb{R}^{n}), consequently they act not only on Φ but also on $\mathbb{R}^{\mathbf{n}}$ as "infinitesimal displacements" of \mathbb{R}^{n}. This permits to obtain by (18) the "formal infinitesimal displacement" of \mathbb{R}^{n} - the full variation $\delta I d_{t}\left(Y_{\tau}\right)$ and finally, using the Maclaurin expansion (20) to come to the asymptotic evaluation of the perturbing flow $\overrightarrow{\exp } \int_{0}^{t} Y_{\tau} d \tau$

- the basic goal of many problems connected with ordinary differential equations, in particular of optimization problems.
"The usual variations" of the perturbing flow - the successive terms in the Volterra expansion

$$
\overrightarrow{\exp } \int_{0}^{\mathrm{t}} Y_{\tau} d \tau=I d+\int_{0}^{t_{1}} d \tau_{1} Y_{\tau_{1}}+\int_{0}^{t_{1}} d \tau_{1} \int_{0}^{\tau_{1}} d \tau_{2} Y_{2} \circ Y_{\tau_{1}}+\ldots
$$

have no invariant meaning starting from the quadratic term, therefore they act only on Φ but not on \mathbb{R}^{n}. Our actual achievement consists in extracting the "invariant variations" $\delta^{(k)} I d_{t}\left(Y_{\tau}\right)$ from the "usual ones". Their interrelations are established by (20), for
example

$$
\begin{aligned}
& \delta^{(2)} I d_{t}\left(Y_{\tau}\right)=\int_{0}^{\mathrm{t}} \mathrm{~d} \tau_{1} \int_{0}^{l} \mathrm{~d} \tau_{2} Y_{\tau_{2}} \circ \mathrm{Y}_{\tau_{1}}-\frac{1}{2} \delta^{(I)} I d_{t}\left(Y_{\tau}\right) \circ \\
& \text { Suppose an arbitrary flow } \mathrm{F}_{\mathrm{t}}=\overrightarrow{\exp } \int_{0}^{\circ} \int_{\tau}^{\mathrm{t}} \mathrm{X}_{\tau} \mathrm{d} \tau \text { rather than the }
\end{aligned}
$$

identity flow is perturbed by Y_{t}. Then the corresponding variations $\delta^{(k)} F_{t}\left(Y_{\tau}\right)$ are defined by

$$
\begin{aligned}
\delta^{(k)} F_{t}\left(Y_{\tau}\right)= & \int_{0}^{t} d \tau_{1} \int_{0}^{\tau_{1}} d \tau_{2} \ldots \int_{0}^{\tau_{k-1}} d \tau_{k} p_{k}\left(\left(\overrightarrow{\exp } \int_{0}^{\tau_{1}} a d x_{s} d s\right) Y_{\tau_{1}}\right. \\
& \left.\ldots,\left(\overrightarrow{\exp } \int_{0}^{\tau_{k}} \operatorname{ad} X_{s} d s\right) Y_{\tau_{k}}\right)
\end{aligned}
$$

 bing flow we obtain the "Taylor series expansion around the initial field $X_{t}{ }^{\prime \prime}$:

$$
\overrightarrow{\exp } \int_{0}^{t}\left(\overrightarrow{e x p} \int_{0}^{\tau} \text { ad } X_{s} d s\right) Y_{\tau} d \tau \cong e^{\delta F_{t}\left(Y_{\tau}\right)}
$$

As a Taylor series expansion of the perturbed flow we may consider

$$
\overrightarrow{\exp } \int_{0}^{t}\left(X_{\tau}+Y_{\tau}\right) d \tau \cong e^{\delta F_{t}\left(Y_{\tau}\right)} e^{\delta I d_{t}\left(X_{\tau}\right)} .
$$

6. Construction of the polynomials (13)

Consider the free associative algebra Ass (ad, Y_{1}, Y_{2}, \ldots) over \mathbb{R} with (multiplicative) generators ad, Y_{1}, Y_{2}, \ldots, and denote by $D(a), a \in A s s$ ($a d, Y_{1}, Y_{2}, \ldots$), differentiation in the algebra defined on generators by $D(a)=a(a d), D(a) Y_{i}=a Y_{i}, i=1,2, \ldots$.

Further, consider an arbitrary word from the algebra composed of generators $a d, Y_{1}, Y_{2}, \ldots$. To each Y_{k} entering a given word w we assign a nonnegative integer - the index of Y_{k} in w - by the following procedure. Represent $w=w_{1} Y_{k} w_{2}$, where w_{1} (may be an empty word) does not contain Y_{k} and suppose $w_{1}=v_{1} \ldots v_{\ell}$, where each of the $\mathbf{v}_{j}-\mathbf{s}$ is one of the generators. Define a set $J \subset\{1, \ldots, l\}$ by the rule: $i \in J$ iff the following two conditions are satisfied: 1) the number of occurences of ad in the word $v_{i} v_{i+1} \cdots v_{\ell}$ is equal to the number of occurences of the $Y_{j}-\mathbf{s}$;
2) for every i '> i the number of occurences of ad in the word $v_{i}, v_{i},+1 \ldots v_{l}$ does not exceed the number of occurences of the $\mathbf{Y}_{j}-s$. Then the index of \mathbf{Y}_{k} in w is equal to the number of elements in J (which may turn out to be empty).

Among all possible words composed of ad and the $\mathbf{Y}_{\mathbf{j}} \mathbf{- s}$ call regular words those which could be regarded (by appropriate distribution of parentheses) as elements of the free Lie algebra with the $\mathbf{Y}_{j}{ }^{-8}$ as generators and ad with its usual meaning (whenever possible this could be done only in a unique way).

Finally write down the sequence of real numbers $\beta_{0}=1$, $\beta_{1}=\frac{1}{2}, \quad \beta_{i}=\frac{1}{i!} B_{i}, i=2,3, \ldots$, where $B_{i}, i \geq 2$, is the $i-t h$ Bernoulli number: $B_{3}=B_{5}=B_{7}=\ldots=0, B_{2}=\frac{1}{6}, B_{4}=-\frac{1}{30}, \ldots$.

Now consider an element
($\left.D\left(\operatorname{ad} Y_{k}\right) \circ \ldots \circ D\left(\operatorname{ad} Y_{2}\right)\right) Y_{1} \in$ Ass $\left(a d, Y_{1}, Y_{2}, \ldots\right), \quad k \geq 2$, which is obtained from Y_{1} by successive applications of the differentiation operators $D\left(a d Y_{2}\right), \ldots, D\left(a d Y_{k}\right)$ and which is the sum of ($2 k-3$)!! regular words
$\left(D\left(\operatorname{ad} Y_{k}\right) \circ \ldots \circ D\left(\operatorname{ad} Y_{2}\right)\right) Y_{1}=w_{1}+\ldots+w_{(2 k-3)!!}$, each of the symbols Y_{1}, \ldots, Y_{k} entering every word w_{j} exactly once. Denote the index of Y_{i} in w_{j} by $N_{i j}$ and define $P_{1}\left(Y_{1}\right)=Y_{1}$,

$$
\begin{aligned}
& P_{k}\left(Y_{1}, \cdots, Y_{k}\right)=\beta_{N_{11}} \cdots \beta_{N_{k 1}} w_{1}+\beta_{N_{12}} \cdots \beta_{N_{k 2}} w_{2}+ \\
& +\ldots+\beta_{N_{1}(2 k-3)!!} \cdots \beta_{k(2 k-3)!!}{ }^{w}(2 k-3)!!, k \geq 2
\end{aligned}
$$

Here are the first four polynomials:

$$
\begin{aligned}
P_{1} & =Y_{1}, P_{2}=\frac{1}{2}\left[Y_{2}, Y_{1}\right], \\
P_{3} & =\frac{1}{6}\left[Y_{3},\left[Y_{2}, Y_{1}\right]\right]+\frac{1}{6}\left[\left[Y_{3}, Y_{2}\right], Y_{1}\right], \\
P_{4} & =\frac{1}{2}\left(\left[\left[Y_{4}, Y_{3}\right],\left[Y_{2}, Y_{1}\right]\right]+\left[\left[\left[Y_{4}, Y_{3}\right], Y_{2}\right], Y_{1}\right]+\right. \\
& +\left[Y_{4},\left[\left[Y_{3}, Y_{2}\right], Y_{1}\right]\right]+\left[Y_{3},\left[\left[Y_{4}, Y_{2}\right], Y_{1}\right]\right] .
\end{aligned}
$$

