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EXPONENTIAL .REP.RESENTATION OF SOLUTIONS OF ORDINARY 
DIFFERENTIAL EQUATIONS 

R. Gamkrelidze, Moscow 

I shall describe here a kind of calculus for solutions of ordi

nary differential equations developed jointly with my collaborator 

A.Agrachev. This calculus is based on the exponential representation 

of the solutions and reflects their most general group-theoretic 

properties. In deriving the calculus we were strongly influenced by 

problems of control and optimization and it is shaped according to 

the needs of these theories. Nevertheless it might be considered, 

as I believe,not merely as a technical tool for dealing with con

trol problems only but could also be of more general interest. This 

may justify my choice of the topic for the Equadiff conference. 

1« Differential equations considered 

Let us consider a differential equation in IR n 

(1) z = Xt(z) 

where X.(z) i s a C°°-function in zE]Rn for V-tEjR » measu
rable in t for ¥ z £ ] R n and sat isfying the condition 

<oo | k=0,l,... <2> Kllk * / \ ( t ) » j !vt)dt 

where || .|L denotes the norm of the uniform convergence in ;Rn 

up to the k-th derivative. 

Our first goal is to find a suitable representation of the flow 

defined by (1), that is, of a family of C°°-diffeomorphisms Ft f 
t G l , of R n satisfying the equation 

<3) £ V s xt ( pt x ) • Fo - Id y*eIRn • 
The existence of F. is guaranteed by (2). 

2. Transforming (3) into a linear "operator equation" 

There is a procedure transforming the nonlinear equation (3) 

into a certain linear "operator equation" for P. • To describe it 

let me introduce some standard notions. 

(̂  will denote the algebra of all C°°-scalar functions frg,.< 

on JRn with the topology of the uniform convergence on compact 

sets for every derivative. A- stands for the associative algebra 
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of all continuous linear transformations of >̂ • The composition 

of two elements A, ,A2 in A will be denoted by A, o Ap • The 

operators from A- can be applied also to vector-valued functions 
on S **• Denote by O the identity mapping of ] ^ n : Q(x) = x • 

We shall say that a sequence of operators A, ,Ap ,... from Jr 
is convergent to A iff the sequence of functions A,0, A^O, ... 

converges in ^ to AG . Every diffeomorphism F of 3frn will be 

considered as an element of Ar: Ff(x) = f(Fx), YxE]Rn, and the 

set of all C°°-diffeomorphisms of JRn will be denoted by g) • 
By j£ we shall denote the Lie algebra of all C°°-vector fields on 

JRn, which is a subspace of A characterized by the differentiation 

rule X(fg) = (Xf)g + f(Xg) V-XE^S , V f f g 6 <| • The Lie bracket 

of two fields will be denoted as usual by [x,YJ = XoY - YoX = 

= (ad X)Y • The following important relation holds: 
, def 

(4) FoXoF"1 » (Ad F)X€^6 VxE«£ , trFE<0 . 

Consider X. , tG ]R , in (1) as a nonstationary (time-dependent) 
vector field on Rn* It is not difficult to show that (3) is equi

valent to the linear "operator equation" for the flow F. 

(5) It Ft = Ft o Xt > Fo = I d < =* Ft = Id M V x c ^ > 
Jo 

where the operations of differentiation and integration in t should 

be understood in the "weak" sense: first apply the operator to an 

arbitrary function from <£ and then differentiate or integrate. 

The equivalence between (3) and (5) should be understood literally 

- the existence of a unique solution of (3) implies the existence of 

a unique solution F. , t€ IR , for (5) which at the same time ne

cessarily turns out to be a flow and vice versa. Certainly we can 

always consider the flow Ft only for values of t sufficiently 

t, 
close to zero since the equation F. = F. • I F^oX^dr , t -

° \ 
arbitrary fixed, has exactly the same properties as (5), which per

mits to restore the whole flow F^ , t G R . 

Call the formal series 

oo t„ Tl /ri-l 

S [a*l\ d r 2 — d r i x r . o X T, ,<>••• oXar, » 
i-a J o J o J o i i-i i 

(6) Id + 

arising when solving the linear equation (5) formally, the Volterra 
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series corresponding to (5K 

3« Exponential representation of the flow 

Suppose the field Xt analytic on d n and subject to the con
dition (2), where the norms J. should be understood (in this ca
se) as norms of the uniform convergence in a certain complex a^-
-neighbourhood (<¥^> 0) of K n C £ n • Then the Volterra series 
(6) converges (in the above defined sense) for every t rendering 

v 
the integral I flLAt)^t a sufficiently small value to an analy-

•V 
li 

lution of the equation (5) (proof by the method of majorants). 
rf 
t 

tic diffeomorphism xi->Ftx , and the obtained flow is the unique so-
(5] 

The fields Xt generally do not commute for different values 

of t , hence the order of the factors in the term 
Ti-1 J0 ~ J 0 

V r 
dtf-J az2 •• 

Jo JQ 

d f .X^ ••• X.̂  could not be changed and the corresponding 
, 0 i i 

times r. increase from left to right: 0 — f. — ••• — T- — t • 
Adopting the terminology used by physicists we call the flow Ft 

to which the series (6) converges the right chronological exponent 
of Xt and denote it by 

(7) Ft = e^p / X^dtr , 

Jo 
the arrow indicating the direction of growth of the f.-s in the 
successive terms of the "right" Volterra series (6). 

In the general C°°-case the series (6) is not convergent, how
ever, we can call the unique solution of (5) (which exists and is a 
flow according to the standard existence theorem for (3)) the right 
chronological exponent of Xt and denote it with the same symbol 
(7K The following basic asymptotics may justify this convention: 

*> r i - i 
dt .Xv o 

0 * 

— oXr>HIQ,o^
CQ,k( l^rlla^l^^H^Q^l V f € § > 

- Jo 
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where II.IL . , j-=0
f
l
f
 2,... denotes here and in the sequel the 

II I I W i J 

norm of the uniform convergence of all derivatives up to the order 

j on an arbitrary compact set QE'R
n
, Q - a compact neighbourhood 

of Q of radius / /^(tjdr . 

However, we can go even further in interpreting the symbol (7) 

and describe a sort of "summation procedure" which enables us to 

"sum up" the Volterra series (6) in the general C°°-case to a fami

ly of operators F. which turns out to be a flow satisfying the 

equation (5), and thus give an existence proof for (5). Uniqueness 

is an easy consequence of the fact that P
+
 is a flow. 

To describe the "summation procedure" take the "^-type" analy

tic mollifier 

1 -фг 

( £ - ^ 0) 
* ' <iït >n * 

( £ - ^ 0) 

and con ider the convolution 

• * ^' ' LÍ-rЛ - - i ү - -̂ 1 f 

_
(
.-w ,2 

î *- Xt(w )dw Xt <->" ^ ^ t -
( f e ) П

 J « 

_
(
.-w ,2 

î *- Xt(w )dw . 

( Ç ) 

The obtained field Xt
 c ' is an entire-analytic field on 1 n f oг 

every £, > 0 subject to (2) (up to a constant factor for /fck(t)), 

thus the corresponding Volterra series is convergent to a flow 
Ft which satisfies the equation (5). It turns out that F+ 
( £—> 0) is a Cauchy family of flows (in the topology of the uni
form convergence on compact sets of ]Rn for every derivative) and 
converges to a flow Ft which is the unique solution of (5). We 
consider the flow Ft , t £ H as the "generalized sum" of the right 
Volterra series (6) and call it the right chronological exponent of 
xt s — V —• V 

«j~ exp X r d t = exp I X r dr o Xt . 
^0 ^0 

The left Volterra series and the corresponding left chronologi
cal exponent could be considered in a completely symmetrical way 

tr oo t, rA 5i-l 
o Gt -= exp 

t * 00 XA LJL ^.i-1 
/ x r ď c = Id + ^ / d r x / d f 2 . . . / d r ^ 0 

^0 i=l ^0 J o Jo * 

4 
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t 
The flow exp / -X^ dr satisfies the "adjoint operator equation*1 

for (5) ^0 

A Gt = - Xt o Gt > Go = Id • 
which is equivalent to the linear partial differential equation of 

the first order in ]Rn 

ur(ttx) = G.f(x), f(x) a GQf(x) = ur(Otx) - the initial function. 

Evidently 

tv* t/« \f \fi 

exp / X ^ d f o exp I -X r d r = exp - X ^ d f o exp \ X^dr = Id 
JQ JQ JQ JQ 

In the "commutative case" that i s i f \jL. , J X~ d r j = 0 
"V t G R we have ^0 

V V oo tL 

v i exp X.^dr = exl> X r d t a M • S ^ M x r d r } 1 = 

^0 tr ^0 i=l ^0 

/ Xrdr 
- e J0 . 

— V tx 
For example, i f X. = X then exp I X f d r = e 

A) 
To demonstrate the flexibility of the obtained representation 

I shall derive formulas expressing two basic objects in the theory 

of ordinary differential equations - the perturbing flow of a given 

flow F. and the variation of F, • 
4. The perturbing flow 

Suppose the field X. and the corresponding flow F. = 

= exp X^ dtr fixed. Call an arbitrary field Y. a perturbing 

^0 tr 
f i e l d for X. , the flow exp J (Xr + Y^ )df - the corresponding 
perturbed flow. ^0 

Problem. Find a flow 0. » C t(Y r ) sat isfying the equation 

(8) exp j ( x r + Y r ) d r « C t ( Y t ) o « p / x r a r = c
t <

Y r ) o F t # 

JQ JQ 
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We call C ^ Y ^ ) the perturbing flow for Ft corresponding to Yt. 

The proposed solution coincides with the method of variation of 

constants and could be carried out as follows. According to (4) we 

can consider Ad F. in the formula 

(9) (Ad Ft)Z = F^ZoF^
1 , ZG&& , 

as a time-dependent linear transformation of && • Differentiating 
we obtain the equation 

H A d F t r A d p t o a d x t » 
which suggests the notation 

t 

(10) Ad Ft = exp / ad X r df . 

Jo 
Differentiation of (8) yields 

•k c t ( Y r ) -c ttt r)o(AdF t)Y t . 

whence combining (8) and (10) we come to formulas 

(11) C t(Y r ) = e l$ I (Ad F r )Y c dC -

— Y — 7 ° = exp (exp ad Xsds)Yrd'T 9 

JO JO 

- > V — V — ? 
exp I (Xr+Y.r )dr = exp / (exp J ad Xsds)Yr d t ° 

Jo t Jo Jo 
exp / X~dr , L 

asserting two basic facts. 1) If X. ,Y. are analytic (in t and 

z ) and satisfy (2) then evaluating all chronological exponents on 
the right sides as the corresponding formal right Volterra series 

and performing the indicated operations we come to convergent (in 

appropriate regions) series defining the flows standing on the left 

sides. 2) For the general C°°-case the equalities (10)-(11) should 

be understood in the following asymptotic sense: 

^ tj. k tç Д j-i-1 
| |{ xp ađXç-dtr - (Id + ̂  [ dtr^ dт . . . đ f . 

Ô i= l ^O J 0 J 0 

. . . ađ Xr )}z|| <CQ ( ( | |xJ|$ f l c ЛdtГ ) k + 1 | |z | |S 

a d X <ү o • < 

k+1 

k=l,2, 

V z є ^ , 
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exp (Xr *Yt )dr - (Id + 2 d r i 
O ' i = l ^0. 

k t„ ţÓL T i - 1 
d t 2 . . . d r j U d F r ) 

t J° ° 1 

Il-Pjlfc k + 1 • I n c a s e of t ime i n d e p e n d e n t f i e l d s X. s X, Y. = Y 

V «,* v^™ * t x -7 a - t X . t ad X^ A t(X+Y)_ — * f A r a d L , . n tX we have e oZ°e = e ^ f e = exp e j f d x ° e . 
JO 

The second formula shows that even if the fields X,Y are time-
-independent the corresponding perturbing flow is expressed through 
a chronological exponent. 

Consider a flow Ft = exp / Y ^ W * . . . o iip / Y^m)dr 
-10 -'O 

and suppose we have to define the field Zt that generates Ft : 

— Y 
Ft = exp I Z^dt' • We call Z. the right chronological logarithm 

JQ 
of F̂  and denote Zt = log F. . It is expressed by (see (9)-(10)) 

(12) log (£xp / Y ^ W o . ^ o S p / Y ^ m W ) = 
JO ^0 

- A (Yr , ..., Y^ ) - Ft o ^ Ft -

= (exp j -ad Y^m)dro ... o exp / -ad Y^2)dr )Y^1) + 

t? t? 
+ (exp Í -ad Y(

f

m)dťc ... oexp í -ad ï[3)dr)ү|2)
 + 

^O t
f
 ^O 

• ... • («É -ad ү[m)
dГ ÌY^"15 + Y^m) . 

Jn "0 

5# The variation of a flow 

We start with the following problem. For a given flow F. = 

exp / 
Jn 

Y~ dr determine a field V.(Y^ ) which satisfies in an 
'0 

appropriate asymptotic sense (to be formulated precisely) the rela
tion 
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Y^dr '= e t = Id +YL TT (v
t
(Yr)}1 • 

J i=l 
It is natural to call V . ( Y r ) the usual (not chronological) loga
rithm of the flow considered and to denote 

t, 
V t ( Y r ) = In exp Y r d r • 

JO 

For a precise formulation we have to consider noncommutative 
nonassociative polynomials over jfcf P(Y-,, ••• ,Y, ) in k=l,2,... 
fed - valued variables Y^ with the Lie bracket multiplication; the 
P-s consequently will also be ^ - valued* A simple and explicit 
algorithm (see n°6) prescribes a universal sequence of such polyno
mials 

(13) ^ 1 1 ' 2 1* 2'••••• V ( i* • • •' v'•* *• • 

P. - homogeneous of degree k in its variables, each variable ha

ving degree 1, for which the following theorem is valid. 

Theorem. For every field Y. consider the formal series 

oo t, %1 Ti-1 

(14) 
00 t* rl ž 1-1 

h a i : ) m Y Z ázi\ d<r2 — *^A«ir. — .V)a 

i=l j0 Jo J o -1 x 

00 

•Z] vii)(Yr> 
i=l 

and call it the formal vector field associated with Y. • Then the 
following asymptotics holds: k 

r(І), t, BvЈ^íïç) 
i=l % c " (15) || exp | Y r d « r - e-~ A || < 

O t, 

-cQ,k< í l l \ i l a , k + i d ^ k + 1 . k = i»2 ' 
Jo '0 

also expressed by either of the relations 
t/, oo 

(16) ln ěxp I Y rďC =YL V .[ i } (Y r ) - Vt(Y,r) , 
jo i=l '0 i=l 

t ^ „Ш YL V
t
 ( Y ť ) y /y \ 

— • — e • exp / Y r dtr 
J0 

As an immediate consequence of (15) we obtain 
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(17) ( V ^ i ) ( Y r ) ) x = 0, i = l , . . . , k - l =>(exp f Yr dtr )x = 
t . ^0 

= x + ( v [ k ) ( Y r ) ) x + « ( l lY r l l Q > k + 1 c ir ) k + 1 V x G i ? n , 
^0 

J C = 1 , • _> , • • . • 

Formulas (15), (17) justify the forthcoming terminology. Call 

the field Vt *(Y r) the k-th. variation of the identity flow Idt 
corresponding to Yt - the perturbing field of the zero field (which 

generates the identity flow), and denote V£k*(Yr ) = £^I&tC*,v )• 

Similarly! call the formal field (14) the (full) variation 

rSldt(Yr ) of the identity flow 

oo 

(18) £idt(Yr) = J Z ^
(i)ldt(Yr } ' 

i=l 

and the formal series 

V (Y ) °° 

(19) e t * = Id +YLh (vt«r»1 

i=l 

- the formal flow corresponding to the formal field V t(Y r ) • Ac

cording to (14), (16) the following basic asymptotic expansion is 

valid: 

(20) exp Y r d t = e l r = e t r • 

^0 oo 
= I d + C T7 '^t^r') 1 t 

oo i=l 

i=l oo t/. ^L Vi-l 
= Z ] | d r l dr2... dГ.P.ÍY.^,...,!^) 
i=l Л> J 0 •* 0 * * 

)< 

L 

We call it the "Maclaurin series expansion
0
 (around the zero field) 

of the flow exp
 Y

t *
d r
 "

 t h e
 perturbing flow for Id

t
 under 

^0 

Y
t
 , which can be also regarded as the corresponding perturbed flow. 

A composition rule in the set of formal flows (19) defined by (see 

(12))
 V Y

( 1 )
}
 ^ - 4 2 ) , - ^ ( x W j t t ) , , 

e o e = e 

turns it into a multiplicative group. 
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Unifying formulas (12), (20) (see also the construction of the 

P^-s) we come to a generalization of the Campbell-Hausdorff formula 

t„ t. 

(21) ex^ j Y^
1 )
dro...oexp J Y^

m )
df =" 

oo -u Vl-l 
Z3 /dr.... dr,P.(z

r
,...,z

f
 ) 

~
 a
i=l

 J
0

 x Jo x x
 *1 i 

t . » 

-ad Y [
B
W O . . . C exp / -ad Y,j

2)
dr )Y^

1}
 + 

0 . tf ^0 

• ... + (Sxi / -ad Y<.
m)
dr )Y{

m
-

1 )
 + Y {

m )
 . 

The usual Dynkin form of this formula (when Y^
l )
 = Y , m=2, t=l) 

seems to be unnecessarily complicated which results from the fact 

that it actually carries out all i-fold integrations indicated in 

(21). .For analytic fields (both in t and z ) all formal series 

involved in (18)-(21) are convergent provided the appropriate norms 

of the Y
t
-s are sufficiently small (I shall not go here into the 

details of precise formulation). 

The crucial advantage of the introduced variations consists in 

the validity of the asymptotic relation (20) and in their invariant 

form - the <p Id+-s are vector fields and thus belong to the 

first tangent bundle of the underlying space (in our case of ]R
n
), 

consequently they act not only on <|> but also on !R
n
 as "infini

tesimal displacements** of ]R
n
. This permits to obtain by (18) the 

••formal infinitesimal displacement** of 1Rn
 - the full variation 

rTld+ (Y^ ) and finally, using the Maclaurin expansion (20) to come 
Ч**Г 

Ï 
JҐ\ 

to the asymptotic evaluation of the perturbing flow exp Y^ dr 

0̂ 

- the basic goal of many problems connected with ordinary differen

tial equations, in particular of optimization problems. 

••The usual variations*' of the perturbing flow - the successive 

terms in the Volterra expansion 

tf, tn f\ exp I Y r
d r = Id + d r ^ Y ^ * I d r J dr

2
Y

r
«Y

r
 +... 

0 ^0 * 0 0
 2 1 

have no invariant meaning starting from the quadratic term, therefo

re they act only on <$ but not on R
n
. Our actual achievement con-

(k) 
sists in extracting the "invariant variations" <p 'Id

t
(Y

r
 ) from 

the "usual ones". Their interrelations are established by (20), for 
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example 

<f(2)idt(Yť ) - / đ r W « Л « ï t - J í ( 1 ) i đ t ( Y t )• 
Jn J n - -• 0 ° m 

° 4 I ã t ( ү r> • Suppose an arbitrary flow F
t
 = exp / X

r
 dtf rather than the 

^0 

identity flow is perturbed by Y
t
 . Then the corresponding variations 

^
( k )

F
t
( Y

r
 ) are defined by 

Tn tv_T ri 

^ k Ч ( т c> - d t r l d T 2

# # # d r k P k ( ( e x p ad X 3 ds)Y r f 

J O ^ O J 0 J 0 1 

r k 

. . . f (exp ad X f lds)Y r ) f 

^ 0 oo k 

the fu l l variation cfF t (Y r ) = ̂ . rf<l)Ft(Yr ) , and for the pertur-
i=l 

bing flow we obtain the "Taylor ser ies expansion around the i n i t i a l 
f i e l d Xt": 

—-> y —> rf ^ F t ( Y r ) 
exp (exp / ad X

s
ds)Y

r
df = e x 

Jo Jo 
As a Taylor series expansion of the perturbed flow we may consider 

y V <5^F.(Y
r
) £Id.(Xr) 

£xp I (Xr + Y r )dt ^ e
 t c e t 

^0 

6. Construction of the polynomials (13) 

Consider the free associative algebra Ass (ad,Y, ,Y2 ,...) 

over jR with (multiplicative) generators ad, Y, ,Y2 ,•••, and de

note by D(a), aGAss (ad,Y, fY2 , • • • ) , differentiation in the algeb

ra defined on generators by D(a) = a(ad), D(a)Y. = aY. , i=l,2,... • 

Further, consider an arbitrary word from the algebra composed 

of generators ad,Y, fY2 ,... • To each Yk entering a given word 

w we assign a nonnegative integer - the index of Yk in w - by 

the following procedure* Represent w = w,Y.w2 , where w, (may be 

an empty word) does not contain Yk and suppose w, = v, ...•.v« f 

where each of the v--s is one of the generators. Define a set 

JC{l,...,£} by the rule: iGJ iff the following two conditions 

are satisfied: 1) the number of occurences of ad in the word 

v.v.^, v* is equal to the number of occurences of the Y.-s; 
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2) for every i*> i the number of occurences of ad in the word 
vi,vif+l ••* vl does not exceed the number of occurences of the 
Y.-s • Then the index of Y, in w is equal to the number of ele-
ment3 in J (which may turn out to be empty). 

Among all possible words composed of ad and the Y.-s call 
J 

regular words those which could be regarded (by appropriate distri
bution of parentheses) as elements of the free Lie algebra with the 
Y.-s as generators and ad with its usual meaning (whenever possib-
J 

le this could be done only in a unique way)» 
Finally write down the sequence of real numbers A = 1, 

^1 = \ • fii s 17 Bi • i = 2 t 3 f * t where B. , i-2 f is the i-th 
Bernoulli number: B-> == B-. = B„ = . •• = 0 , B2 = 5 i B A = " 30 »••• • 

Now consider an element 
(D(ad Yk)o ... oD(ad Y ^ ^ ^ s s (ad>Y]L ,Y2 , . . . ) , k > 2 , 

which i3 obtained from Y, by successive applications of the diffe
rentiation operators D(ad Yg),*.., D(ad Y^) and which is the sum 
of (2k-3)M regular words 

(D(ad Y^)o ... oD(ad * 2 ^
Y 1 = w.̂  + ... + w(2k-3)n •

 each of the 

symbol3 Y, ,...fY, entering every word w. exactly once. Denote 
the index of Yi in w. by Nj. and define - M ^ T ) = Y.̂  , 

Pk(Yl ••••»V = ./5N11*
##^Nkl

wl + fi\2'
m' fi\22 + 

*••• + / 5 Nl(2k.3)M-/ a Nk(2k.3)!! W ( 2 k- 3 ) , ! ' ^ ^ 

Here are the first four polynomials: 

Pl = Yl » P2 = 2 LY2 ,YlJ » 
P3 = K Y 3 » ->2 ' Y l ] 3 + i H Y 3 »Y

23 » Y J » 

P4 - £<LlY4 »Y3^ » CY2 . - j D + C[[Y4 »Y
31 • Y

23 » Y l ] + 

+ LY4 . [L Y
3 »

Y
21 » Y l l ] + LY

3 . [EY4 »Y
2'J » Y J ] • 
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