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ASYIflPTOTIC METHODS FOR SINGULARLY PERTURBED 

LINEAR DIFFERENTIAL EQUATIONS IN BANACH SPACES 

Janusz Mika, Swierk-Otwock 

Introduction 

Take a Banach space X with the norm \ \ and a singularly perturb­

ed differential equation 

(1) £§£-1 * T(tU(t^ + m(t} 
where T(t^ is a time-dependent linear operator, m (t̂  a given function, 

and e a small positive parameter• Such equations were analyzed by 

Krein [l] who proved that the zero order asymptotic solution consist­

ing of three parts: inner, outer, and intermediate, converges uni­

formly to the exact solution. In [2] the author found the uniformity 

convergent asymptotic solution of any fixed order containing only 

outer and inner parts matched together by a proper choice of initial 

conditions. Such a procedure was already used by Vasil'eva and Butu-

zov [3] for systems of ordinary differential equations. 

From the practical point of view, much more interesting are sy­

stems of singularly perturbed differential equations 

£ d^itl m A ( t ^ ( t ^ + PitlyW + q(t} ; 

M ... 
Ql tUW + B(tfy(t) + r W -Ü-

which were analyzed by the author in the zero order approximation 
in ]4\ and in any fixed order approximation in [5] • The results can 
be also applied to a single di f ferent ia l equation in a Banach space 

13} ^f .^- - \ A z(t} + Bz(t} + mCt} 

such that the singularly perturbed operator A has an eigenvalue at 

the origin contrary to the conditions which have to be satisfied 

for (1} • If A and B are bounded operators then the Banach space can 

be split into a direct sum of two subspaces and (3} written as a 

system of differential equations which can be treated similarly as 

(2} .In particular, one can prove the uniform convergence of the 

asymptotic solution to the exact one for the initial value problem 

for the equation (3} • The detailed analysis will be published else­

where. 

The asymptotic expansion method for differential equations with 

singularly perturbed operators having an eigenvalue at the origin 

was first applied by Hilbert to the Boltzmann equation in kinetic 
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theory. The presented results give a rigorous justification for the 
Hilbert approach in case of bounded operators* 

As an example, the linear Boltzmann equation for neutrons in a 
discretized form is considered and the asymptotic expansion method 
used to derive the diffusion equation. 

This work was supported in part by the International Atomic 
Energy Agency under the Research Contract Ho. 1236/RB# 

Hilbert asymptotic expansion method 

let A be a bounded linear operator from X. into itself with zero 
as its semisimple isolated eigenvalue. The corresponding finite-
dimensional eigenspace J(* consists only of such elements y c X that 
Ay » 0. The space 36. can be represented as a direct sum 

X - JP • K 
where both c/f and vi, are invariant subspaces of A and A is one-to-
one from tR into itself [8, Section 148 } • If P is the projector 
from X onto JP and Q « I - P then 

P X =- <N* ; Q X = tH . 
The spectrum of A, except the point at the origin, is assumed 

to be located in the left half-plane and bounded away from the ima­
ginary axis so that 

oC » inf Re X < 0 9 

M \ c SpA;X^ 0 . 
Thus the uniformly continuous semigroup G (t̂  generated by QAQ taken 
as an operator from Ji, into itself satisfies the inequality 

\\G Wll 4 M • exp ( o! t} ; 0 4 t Coo 
where M is a constant. 

If B is a bounded operator in X and ra (t̂  a function with values 
from X n times continuously differentiable on [o, t | f then with 
the assumed properties of Af B the equation (3^ has on [of tQ"J a 
unique, strongly differentiable solution z(t) for the initial cond­
ition 

zUA -= e 
where © is an arbitrary element of X • 

Define new functions 
Qz(t} « v(ť) ; Pz(tì « я l t ì 
Qm(ť} * q(tì ; PmÜЛ « r ( t ) 
QÔ « p. ; P = i) 

and transform (3) into an equivalent system of equations 



265 

x Hr^ a QA^vCt) + QBQv(t) + QBPw(t) + q(t) ; 
(5) 

-^||ii = PBQv(t) + PBPw(t) + r(t) 

with the corresponding initial condition 
(6^ v(O) « fK ; w(O) = I) . 
The functions v (t) and qlt) have values from cM, and w (t) and r (t) 
from Of • The operators in (5) are defined accordingly so that, for 
instance, QBP is an operator from Of into Ji o In deriving (5) it 
was taken into account that for any y 

PAy = APy=0. 

The system of equations 15^ is analogous to (2^ so that an 
approach similar to that presented in [.51 can be applied to obtain 
the asymptotic solution of any fixed order to l5\ with the initial 
condition (6) • 

Let the outer asymptotic solution of order n be defined as 

*in\A - Jb£ k V « » * ( n^ - kt>£k \M » 
then vk(t) and wk(t} satisfy the equations 

QAQvk(t) + QBQvk-1(t) + QBPwk-1(t) + £ 1 k q ( t ) « \ { U ; 

dw, (t) 
M * PBQvkU) + PBPwk(t) + £ Qk r ( t ) ; k - 0 , 1 , . . . n, 

v_-,(t) = w ^ l t ) * 0. 

Similarly, if the inner asymptotic solution of order n is def­
ined as 

V ( n ^ - k f o
£ k ^ 5 «(n^-lJo£kV<> ; •*-*/«. * 

then vk(r) and \{x) satisfy the equations 

d* * = QAQvkfC) + QBQv-^CtO + Q B P w ^ iv) ; 

^ dW- (*\ 
-^ - =. PBQvk-1ltl)+ PBPw k - 1 ^ ; k = 0 , 1 , . . . n; 

v^tt} * w ^ ^ s 0. 

The algorithm of solving (7) and (8^ consists of the following 
steps: 

(i) vL(xf) is found by solving the second equation in (8) and 
using the condition that lim yLlv) = 0; for k « 0 it gives simply 

v» 0(^-o; 
(ii^ vk(t) is eliminated from the equations (7) and the resulting 
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equation for w, (t̂  is solved with the initial condition 

V0* • s'ok - \ ^ } 

[±±±\ vkvt^ i s calculated from w,(t^ with the f i r s t equation in 
IA ; 

(Iv) the first equation in (8^ is solved with 

The functions vk(x)and v5k(u) decay in the norm exponentially 

with time as exp (dit̂  where oc is defined in [4) • 
If the asymptotic solution of order n is taken as 

v ( n V l - v t n \ t } + *M (£\ ; wCn\t>| . w(ti)(tf + « * > ( & , 
then^v*nVt) , w'n\tVj tends uniformly on [0, t ^ to the exact 
solution ^vW , wlt)\ of (5} and t6) faster than £ n . 

Application of the Hilbert method in neutron transport theory 

A singularly perturbed differential equation containing the 

operator with an eigenvalue at the origin was first considered by 

Hilbert in the kinetic theory (see e.g. \6\) • The Hilbert expansion 
of the Boltzmann equation, later modified by Chapman and Enskog, 

has played an important role in statistical physics. However, it 

is based essentially on intuitive grounds. Only in the case of the 

linearized Boltzmann equation for special initial conditions it was 

rigorously analyzed by Grad [7] • 

The results obtained by the author and presented in previous 

section indicate the convergence of. the Hilbert expansion for differ­

ential equations in Banach spaces but an obvious disadvantage of 

the analysis is that the operators have to be bounded. Nevertheless, 

the obtained results can be applied to unbounded operators provided 

a mollifying procedure is used. An example of such an approach will 

be given in this section. 

The behavior of neutrons in reactor systems is described by the 

linear Boltzmann equation. In practical situations, this equation 

is by far too complicated to be treated directly so that various 

approximate models have to be applied. One of the most widely used 

is the diffusion approximation. In the literature there are several 

ways of deriving the neutron diffusion equation from the Boltzmann 

equation but so far the Hilbert expansion method was not utilized. 

Take a simplest possible reactor system consisting of an infinite 

slab of thickness a and assume that all neutrons have the same speed 
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which will be taken as equal to unity• The Boltzmann equation for 
such a system is 

(s) If^jTf-Ua^^s^ -ft.*.*) 

"1 - H ^ 1 ; o^t ^ . 
Here z(<^ ,^ ,t) is the neutron distribution function dependent on 
the position variable 9 , angular variable £ , and time t; £ (^ 
and £ B(<^ Bxe absorption and scattering frequencies, respectively; 
hQ (0 ; ̂  , y ^ is the scattering kernel assumed to have the form 

CO 

N MS » ^ « - 2o-SJtib1^p1(^Pl(^. 
where p.̂  (Y:\ are Legendre polynomials and 

(11) b Q ( ^ = 1 ; b l ( ^ < 1 ; 0 4<J < a 1 1 - 1,2 

The solution to (9) is assumed to be periodic so that the 
boundary condition to be satisfied by z [(J ,V ,t) is 

(12) z(o,^ ,t) « z(a,^ ,t) ; -1 4 ^ 4 1; o ^ t < " > • 

The equation (9) is supplemented by the initial condition 

(13) z {^f\ ,0) -e( <$,\); 0 ^ ^ a J - 1 ^ 4 1 . 
It can be shown \Q\ that the equation (9^ with the conditions 

(12^ and (13^ has a unique solution in the Hilbert space of square 
integrable functions* 

The unbounded differential operator in (9) can be replaced by 
its finite difference counterpart if the interval [o,a^J is covered 
by the mesh of points 0 = ̂ 0 ^ Q - | 0 # # # ^ 9 j B a an(i a 1 1 *ke funct­
ions of 0 are replaced by vectors or matrices whose components are 
values of the relevant functions taken at Q-j ••• Q j* T*-e boundary 
condition (12) is accounted for by identifying the values of 
z ^ ,\9t) at <JQ and 0 J ( 

The derivative in (16) is replaced by the matrix 

Ð « 

0 

-*2 

-X, 

0 

0 

0 

0 

0 

Xj 

0 
0 

0 
0 

0 
0 

0 

0 

0 

0 

0 

-*J-1 ° 
0 - * J 

Xj-1 
0 

«here *., = ̂  2 ~ V V ' *J "^1 " \ J-0 • 
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-1 and X . « (o,+1 - Q-j.i^" ; j =- 2, •••• J-1. All the remaining 
operators in (9} are in their discretized form diagonal. 

In the matrix notation one can write (9) as 

IU\ ft"" W * '*) "(*a + *aW* ^ 
+ ?»s \ j \ *.&'?)* [$>* +*(\>^ * 

and the initial condition (13V as z (t ,0^ *= 0 (^ • 
As the space X we shall take the product X = dl x • xoL 

of Hilbert spaces A of functions square integrable over [-1,1̂  • 
Define the operator A as 

as 

"1 x c X , 
where I is the unit matrix. 

With the above definitions, introducing the coefficient ^ 
in front of A one can write (14̂  in the form (3) and apply the 
Hilbert expansion method* The null space Jf is now the sum Cfl as<n0 
+ ̂ 1 , v,here tfQ . d^x x ̂  ; ̂  - <rfjx x JP* ; and 

$^ and Of̂ J are linear manifolds in A spanned by the elements 
ip (^ and 4 p.. [V\ $ respectively. The projectors corresponding 
to {ft are given by the formulas 

with 

and B as 

° i 

cvHm - \ \ji Poî viv) ^vx?. - \ p,M\*$ p-ttvcfl-
Prom 1̂1̂  it follows that the spectrum of A excluding the point 

at origin satisfies the requirement (4) • 
Defining new functions 

P0z (t^ * ^Ut) 5 P-,* U ) - ^ It) ; 

PQm (t) « mott^ ; P̂ -m It) = ̂  m1 It); 
p
0ö - 0 i p, - > n 

and applying the procedure of the previous section one gets in the 
zero order approximation the following outer asymptotic equations 

d VP U^ * 
115̂  — S i 8 f a ^ o W " 3 D l o ^ + rao^ » 



269 

dT At) _ x 

— a l D H 0 ^ - ?>t V*J_ + • - W 
and the corresponding initial conditions V.P [0) -= Q ; ̂  tÔ  -= 0 1 • 

The matrix & t is defined as fet= P> a + fool
1" bi^# 

The equations (15) are a discretized representation of the 

equations obtained from the first order spherical harmonics approx­

imation as applied to (9) with ^ Q[t) as the neutron density and 

X 0(_t̂  as the neutron current. Obviously, they could be improved 

with higher order outer solutions together with inner solutions 

according to the general scheme developed in the previous section. 

The equations (15^ have a different structure from the diffus­

ion equation. In^fact, if fe and P>̂  are constant matrices, then 

by eliminating ^ ^ , ( 2 3 } can be reduced to the second order 

differential equation being a discretized version of the telegraph 

equation. 

To obtain the discretized diffusion equation from (.15) one has 

to introduce another small parameter, say, 6 in front of the deriv­

ative d X Q(t) and apply the asymptotic expansion method as for the 

" a r e — 
equation (2} . As the result in the zero order approximation one 

gets the outer asymptotic equations with respect to both small para­

meters £, and S which after eliminating the current ^00(.iO lead 
to the _discretized diffusion equation 

d \S (t) A A = — ^ 

d{° - i D Tl D *W*) - ̂a ̂  oo^ + • w 
with the initial condition 

"S oM - % 
and 

m(t} » m0(.t^ --J ^"} Dm^t) . 
Thus it is seen that the repeated application of the asymptotic 

expansion method to the Boltzraann equation with respect to two diff­

erent small parameters 6. and £ leads in the zero order outer 

approximation to the diffusion equation, at least in the discretized 

representation. However, the physical justification for introducing 

both small parameters into 114) and (.15) is not so convincing as 

in the case of the Boltzmann equation for gases. The more detailed 

discussion of this problem will be performed elsewhere. 
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