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THE SOLUTION OF PARABOLIC MODELS BY FINITE ELEMENT 

SPACE AND A-STABLE TIME DISCRETIZATION 

J. Nedoma, Brno 

In papers on solution of parabolic differential equations by the 

finite element method error bounds are given either in the case that 

the union of finite elements (straight or curved) matches exactly the 

given domain (e.g. in Zlamal's papers) or in the case of curved ele

ments which do not cover,in general,the given domain (e.g. in Raviart's 

papers).In the former case the error bounds are given for fully (i.e. 

both in space and time) discretized approximate solutions.In the latter 

case the numerical integration is taken into account,however the error 

bounds are given only for semidiscrete(not discretized in time) appro

ximate solutions.Error bounds introduced in this lecture are given 

for fully discretized approximate solutions and for arbitrary curved 

domains.Discretization in time is carried out by A-stable linear mul-

tistep methods.Isoparametric simplicial curved elements in n-dimen

sional space are applied.Degrees of accuracy of quadrature formulas 

are determined such that numerical integration does not worsen the 

optimal order of convergence in Lp norm of the method. 

Let us first introduce the parabolic problem in the variational 

form. Let x-sdx-̂ ,.. .xn) £ sF. Let i- be a bounded domain in R11. Let 

the functions g(x), g^jte), i,j=l,...n defined on ^ and the func

tion f(x,t) defined on &x(0,T] be smooth enough. Let 

(1) gij(x) = gji<x), g(x) ̂  gQC-const) > 0, V x el£ 

and let the differential operator 

C2) L « ^ 5Vteii<*) 5][ T) ifj=l*
xj 1J a xi 

be uniformly e l l i p t i c inX.Let aCu,v) be the bil inear form correspon
ding to operator L f i #e . 

C3) aCufv) ^ ^ ^ g . g B | I dx. 
s£i,j=l ^ ^ ^ j 

We study the following problem: 
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Find a function u(x , t ) such that 

U C L ° ° ( H J ( & ) ) , ! U
 e far1^)}, 

(4) C g | U • • ) 0 f a * a ( u f v ) = ( f f V ) 0 t 2 f V v e H j ( f f i ) and t e ( 0 / Q 

u(x,0) = UQ(X) £ L 2 ( & ) . 

Here HQ(S£) is the closure of the set CQ(S2)(i.e. of the set of infi

nitely differentiable functions with compact support in SE } in the 

Sobolev norm || .1^ Q . H " 1 ^ ) is the space dual to HQ(SS) (with dual 

noraO.L (Hm(S2,)) is the space of all functions v(x,t),x=(x,,..x )€.Si, 

t £ (0,T3 such that v(x,t) £ Hm(rji), y t £ (0,T3 and the function 

Uv(x,t)\\m ^ is bounded for almost all t £ (0,T3 • 

First we discretize the problem (4) by the finite element method 

with respect to x.For this we use a k-regular family of isoparametric 

simplicial curved elements in n-dimensional space which are construc

ted in Raviart's paper[l|.Let L h be a k-regular triangulation of the 

set Sii and let V. be the corresponding finite element space.The union 
of the elements e from t.^ forms some setSih which,in general,differs 
from St .We extend the functions g(x),g^ .(x),UQ(X) to a greater set 

52 O 3^ such that the conditions (l)and (2) are satisfied.In such a 

5 i j 
ficiently small h,it is true 

(5) £ i h c S o 

way we obtain the functions g(x) ,g^ .(x) and u*0(x).Obviously,for suf-

About the solution u of the problem (4) we suppose 

(6) u, !£*ir(Hk*3(&)). 

By the Calderon extension theorem,for every t e (0,T!1 there exist 

extensions u(x,t) , ̂  . Let us denote 

(7) ?(x,t) = g ( x ) | U - Lu, 

where 

(8) L = 21-1.^(1) -!-V 

According to (4) we define now the following semidiscrete problem: 
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Find a function u (x , t ) such that 
ŝ  

C9) (gCx) ~ | . • ) 0 , a h
 + *< u

s . v ) - <*.*>o,Sty V v £ vh, t € (o,r\ , 

us(x,0) = UQ £ Vh, 

where uu is an approximate of uQ(x) and a(u,v) is the bilinear form 

(10)^(u,v) = ( -"--"-"«i^x)!^-!!- dx. 
J a h i,j=l 1J ^ X i * Xj 

We called the problem (9) semidiscrete because it is discretized 
with respect to x only.It is obvious that (9) is a system of ordinary 
differential equations with an unknown vector function of parameter 
t .From here we find the way how to discretize the problem with re
spect to t.We solve the system by v -step A-stable linear method 
(for V =1,2) of order q.We divide the time interval £0,Tl into a fi
nite number of intervals of the same length At.We introduce the fol
lowing notation 

(11) ^m = <Jfm(x) = <Jp(x,mAt), m = 0,1,... 

for any function c|>(x,t). 
If we apply to (9) a v-step (V = 1,2) A-stable linear method we get 
the following discrete problem3. 

Find a function u*(x,t) such that 

ud e Vh for any t = 0, At, 2At, ... T 

(12) (*(x) j L c C ^ ^ O o + At«(2>.uS^ fv) 
j=0 J a u'^h j=0 J a 

- At( ̂ j ^ * > O f a h ' V v € Vh, m = 0,1,... 

ud " *0 t V 

here (see [.11"} and \̂ 12*} ) 
a) for one-step A-stable methods 
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v= i , <*! = 1 , oc0 = - l , 0X = i - e , ^ 0 = e, o ̂  \ i s any r e a l 

number.If 0 = 1/2 then the method is of order q = 2, in all the 

other casee the method is of order q = 1. 

b) for two-eteps A-stable methods 

V= 2, c*2 = 0 , oC1 = 1-2 0 , oCQ = - 1 + 0 , ^ 2 = (1/2) 0+ £*, 
£-, = <l /2)-2f i \ (3Q = (1/2) - (1/2)6 + S-, 0 > (1 /2) , <S> 0. 

Since it is either too costly or simply impossible to evaluate 

exactly the integrals (.f.)Q <-> , '"a(.,.) ,we must now take into account 

the fact that approximate integration is used for their computation. 

For this purpose we use the isoparametric numerical integration (see 

[l] ).We remember: 

Every finite element e e l , is the image (i.e. e -= F (T)) of the 

/ч unit n-simplex T through the unique mapping F : T-»R .Let us suppose 

that we have at our disposal a quadrature formula of degree d over 

the reference set T.In other words, 

dз) {^(змs ^2ľą.$<V 
for any function <b(x) which is defined on T and for some specified 
points b e T and weights GO -Let cb(x) be any function defined on e. 
Then using the standard formula for the change of variables in mul
tiple integrals,we find that 

(14) f <j>(x)dx ^ S C 0 r W e
( ^ r ) \ ^ ( F e ( ^ r y ) 

where J (x) is Jacobian of the transformation e = F (T). 
e e ^̂  

We see that the quadrature scheme (13) over the reference set T in
duces the quadrature scheme (14) over the element e,a circumstance 
which we call "isoparametric numerical integration". 

In agreement with (14) we replace in (12) 
(15) (•f)0,a ^ (•f.)hf laC.,*) ̂

 a

hf«f> 

According to (12) and (15) we define the following ful l discretized 
problem: 

Find a function u h ( x , t ) such that 
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uh £ Vh for t = O , Д t , . . . T 

(16) ( g ( ^ ) ^ ^ j U ^ + J , v ) h +Ata h (^'(a < j uJ[ + J,v) 
J-ü J 

V 

j=o 
= A t ( ^ p ( . f m + J , v ) h , Y v £ V h , m » 0 ,1 , , 

"l = "o e \ 

4.Error bounds 

Theorem. 

Let u(x,t) be the solution of the problem (5) such that 

u$ --- c L (H -*(&*)),-? = lf...q.Let ^ be a k-regular triangulation 
at? n 

of the set Sl h where k is a positive integer such that k > n/2 - 1» 
-^ 

Let the quadrature formulas on the reference set T for calculation of 

the forms (•>»)Q o
 a n d aC#,«) be of degree d ̂  2k and d ̂  2k - 1, 

respectively.Let a given v -step time discretization method be A-sta-

ble and of order q.Let y = 1 or 2. 

Then the full discrete problem (16) has one and only one solution 

uh(xft) and there exists a constant c independent of t and h such that 

<"> K - uh«o,anah^c(^q*hk+1 +\e-\ + U V -V-
LHere g/f £ " are the errors on the first yst,epsf \S.\^ = J (g£ *£)v>ol 

Outline of the proof. 

Let us denote 

C18) u j ^ TI j * A 

where TTJJ =^(xfjAt) is the Ritz approximation of the function 

uJ = *u(xf jAt).We recall that 'u and « are extensions of u and ̂ T 

satisfying the inequalities 

(19) «uttk.3^ « cHu«k+3>a, # k + 3 , & * e-19k+3.a-

Next we recall that by the Ritz approximation of the function u(xft) 
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we mean the function "fl(x,t) £ V h (\£ Hj!j(£i.h)), ̂  t e (0,TJ such that 

(20) <g<x> g ,v) Q ~ *^(T|(x,t),v) = (f(x,t),v)0 o V V £ V h. 
* n ' n 

It is easy to prove that >J(xft) is an orthogonal projection onto V. 
of the function u(xft) in the energy norm given by the bilinear form 
a(.,•)fi.e.that it satisfies 

C21) a(u -Yi^v) =* 0, Y v e vh. 

For the Ritz approximation the following estimate can be derived 

C22) ||u -\\\itSih ± ch k + 1 -Vft k + 3 ,&' - - °.-. 

where c is a constant independent of h and t . 
From (22)N and (18) we get 

( 2 3 ) l A . a . , "H«j - V»o,ah«
 chk«uHk*3,a-

From (18) it follows 

<2«> \i»J - 4\\otSi^ \& - 4h,^ h\*h * \W - uh«o,-v 
Hence|it is sufficient to give an estimation of error bounds for 

(25) £ j s ^ ° - u£ . 

By simple calculation we get from (14) and (16) 

( g ^ V m + J ' T ) h + ^ h ( | o ^ 1 + J , V > 

(26) -" ( < - W
m . v ) ^ ^ • AtE(v ± ^ h - * < * | : o ^ m + J ) 

-AtE( ^ Z T g ^ H - - f c ^ i ^ i T - ^ V v e v h , i~3^1 1 J 7 > x j r - 0 x <>xi n 

where 

<27)--m = g ^ * ^ " A t f t S - I, -Om = « S « , f J , *<*> - H I .*,<(»> M v 3=5 J J d t v j=0 J ) e c ^ 
and where E (<b) is according to (14) the error given by the isopara
metric integration,i.e. 

28) E e ( ł > =jф(x)dx - 2ЗДв<&p)\4><*в<£p>>. 
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We denote the expressions in identity (26) by Am(v), BjJ(v)f D ^ v ) , 

F m(v) f Gm(v), Hm(v) respectively.Next we denote Qm = AtF m - Gm - M H m . 

The identity (26) is true for all v e Vh, hence it is also true for 

(29) v = tf= 2JLp4tm+J • 

From here we get the following basic identity 

(30) SlAjcjr) +At^BPCjr) = ̂ Trjcy) * : & ! > > 
m=0 m=-0 r m=0 m=0 y 

valid for any s such that sAt <; Tf s ̂. v • 
Using the similar technique as in [.111 we prove 

(3D g^)^c2|£f|Jf%-e1[U
0|h*l€.V--|h], V-1,2. 

To this end we use the inequality 

(32) c 3Hv1l 0 j a h^ |vlh , f u V h 

valid under the assumption that the quadrature formula on the refe-

rence set T is of degree d .> 2k.In the inequality the notation 

|v|^ = (g(x)vf vOh is used. 

It is easy to derive the following inequality 

V^> » c4^\±r3£^|^ v=1,2. 
-fj m^u j-o u J n 

C33) 
m=0 ' " ' m=0 ' j 

For this purpose we use the inequality 

( 3 4 ) c 5 l v l l , S L h ^ l l v | l h . * v e V h 
valid under the assumption that the quadrature formula on the refe-

/X . . . . 
rence set T is of degree d ̂  2k-2.In this inequality the notation 

Next, we prove the inequality 

(35) g l . W « c^tut^ * h*+1) s-ujg (aje
+J||0iÄh, V - J.2. j=o 

For Qm(^r) the following estimate can be derived 
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Szí, .-... .. k + i ^ (36) 2 T | Q ^ ) | ^ c Ath k + 1 ^- i |2I (S £ > - + JD , V - 1 , 2 . 
j=0 

To this end we use the inequalit ies 

~k*l, |E(wv)| * c 8 h k + 1 | | w Ц k + l t Ä h Ц v Ц l ł S ! h , 

(37) | E ( Ь V ) | ^ c 9 h k + 1 ' l u IWз,ai> v l l i ,a h 

lï(bSL
iЙ]>l^o1

^-M
k+
з

fa
tt'lli,: 

valid for all w e H
k + 1

( &
h
) , v

 e
 V%

})
'

 u e
 H * *

3
* ^ . t c (o,TQ 

and b(x) £ C (^vJ under the assumption that the quadrature formula 

on the reference set T is of degree d > 2k-l. 

From (31), (33), (35) and (36),using several times the inequality 

(38) jabj <£ lta
2 + ̂  b2 

we get 

From (39) and from [.9 J (see Lemma 2.1,p.396) we get the estimate (17). 

In the end let us add the following remarks: 

Remark 1. 

From (17) we see that the L-y-norm of the error is of a magnitu

de of the order &t q (q =1,2) with respect to At and of the order 
k+1 h with respect to h. 

Remark 2. 

According to our result, for 1-regular triangulation (i.e.for 
linear isoparametric elements) the quadrature formula on the refe
rence set ̂  for calculation of the forms (•,*)Q r> and a(.,.) must 
be,in general,of degree 2 and 1, respectively.lt can be proved that 
using the quadrature formula 

C40) ( f̂(x)d$-s S2g-2[vpCof..»o) +f(0,l,...0) * ... +f(0,Of...l)^ 

(which is of degree 1) for calculation of the form (•>*)Q c> w e obtain 
the same estimate as in (17).In this case the mass matrix is diago-
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nal.In the engineering literature this effect is called the mass 

lumping. 

Remark 3* 
For the three-dimensional space the simplicial curved elements 

have no practical use.For such case the theory using quadrilateral 
elements must be developed.We are working on this problem now. 
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