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A-STABILITY AND NUMERICAL SOLUTION OF ABSTRACT 

DIFFERENTIAL EQUATIONS 

J. Taufer and E. Vitdsek, Praha 

1. Introduction 

In this paper we try to give a survey of some results which have 

been achieved during a few last years in the Mathematical Institute 

of the Czechoslovak Academy of Sciences and which are related on the 

one hand to the problems connected with the numerical solution of 

stiff differential systems, on the other hand, to the problem of 

construction of methods for the numerical solution of partial diffe

rential equations of parabolic type which are of arbitrarily high 

order of accuracy with respect to the time integration step. It is 

well known that these two problems are very closely connected and 

thus, let us first of all mention this connection. Let us begin 

with recalling the concept of a stiff differential system. For 

the simplicity we speak only about the linear system with constant 

coefficients of the form 

(1.1) u> = Au. 

This system is said to be stiff if some eigenvalues of the matrix 

A have negative real parts the magnitudes of which are great in 

comparison with the magnitudes of the real parts of the other eigen

values. The solution of the system (1.1) then contains rapidly de

creasing components which are negligible in comparison with the 

other components and very often, we are not interested in them. But 

when solving the system (1.1) numerically we are generally in such 

a situation that the magnitude of the integration step is controlled 

exactly by these decreasing components. The practical consequences 

are that the integration step must be chosen unpractically small. 

Thus, it would be desirable to have at our disposal for solving 

stiff systems such methods in which the components of the approxi

mate solution that correspond to the rapidly damped components of the 

exact solution would be negligible in comparison with other compo

nents even for relatively large values of the integration step. The 

A-stability introduced by Dahlquist is a property which guarantees 

such behaviour. Since it is now clear that this property will play 

an important role in our investigation let us also recall its de

finition© To define the A-stability,apply first the given method 

to one differential equation of the type (1.1) where A is a complex 

constant with a negative real part. Then we say that the method is 
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A-stable if any approximate solution obtained with help of any in

tegration step converges at infinity to zero. Now it is clear that 

the magnitude of the integration step is controlled in the case of 

an A-stable method only by the accuracy with which we want to appro

ximate those components of the vector of the solution which we are 

interested in. 

Let us now demonstrate on the trivial example of the heat con

duction equation 

2L£S = -la 
x2 " 

(1.2) 0 < x < 1 , 0' 

with the initial condition 

(1.3) u(x,0) = ̂  (x) 

and with the boundary conditions 

(1.4) u(0,t) = u(l,t) = 0 

the connection of the problem of solving a stiff differential sys

tem with the problem of constructing methods for solving parabolic 

differential equations. 

Let us solve the problem (1.2) to (1.4) in such a way that we 

first discretize only the space variable, for the simplicity, by 

the finite-difference method. Putting h = 1/m we obtain 

(1.5) üh - Ahuh 

where u, = Uu(t) is (m-1)-dimensional vector the components of 

which approximate the exact solution at the points x- = ih, i = 1, 

...,m-l and A, is the matrix given by 

(1.6) _ JL_ -2 1. 0, 

1 % /
ч
-

0 *
ч

 ч

 %
 • 

0 1 - 2 

It is commonly known that this method is convergent and that its 
p 

error is of order h • If we want to replace the original problem 

by the finite dimensional one completely we must, moreover, solve 

the system (1.5). But the eigenvalues Ay 

given by the formula 

of the matrix A, are 
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(1.7) ^v = - 4r sin 2—, V=l,...,m-1 
IT 2m 

and, consequently, the system (1*5) is stiff since \ -. behaves 
p 

for small h as -4/h • Thus, if we apply to it a general method 

(not satisfying further special assumptions) the best result which 

we can expect is a relatively stable method, i.e., a method in 

which the magnitude of the time integration step is restricted by 

the magnitude of the space integration step. It may also happen 

that we get a completely unstable method. On the other hand, the 

application of an A-stable method will lead to an absolutely stable 

method and the convergence proof will cause no substantial diffi

culties© 

Thus, we see that the problem of constructing absolutely stable 

methods the orders of which are arbitrarily high is very closely 

connected with the problem of constructing A-stable methods of ar

bitrarily high orders. Since it is known that the order of a clas

sical method which is A-stable is at most 2 we must begin with intro

ducing a class of methods which contain A-stable methods of arbi

trarily high orders. There are various possibilities; we introduce 

the so called block onestep methods, especially for that reason 

that they are very simple and easily applicable to parabolic equa

tions. 

2o BO methods and A-stability 

The method will be formulated for one differential equation 

(201) u> = f(t,u), t £ (0,T) 

with the initial condition 

(202) u(0) = ̂  . 

The right-hand term of this differential equation is assumed to be 

defined, continuous and satisfying the Lipschitz condition with 

respect to u in the strip 0 < t < T, - oo<u < oo so that the 

solution of the problem (2.1),(2.2) exists and is unique in the 

whole interval \0|T/ • 

Let an integer k ^ l , a matrix C of order k and a k-dimen-

sional vector £ be given* Further, put t̂  = ih, i = 0,1, •••o 

where h/> 0 is the integration step and denote by u. the appro

ximate solution at the point t .• Then the block onestep method 

(BO method) is given by the formula 
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(2 .3) *n+l 

An+k 

unl + hC [fn+ll + hfr£> n = 0 , k , 2 k , . . . 

Ln+k 

(f. = f(t.,u.)). One step of the BO method consists therefore in 
J o J . . 

computing k values of the approximate solution simultaneously from 

the generally nonlinear system of equations and the following step 

is started with the last one of these k values. The Lipschitz 

property of f guarantees that the method is practicable at least 

for sufficiently small h. 

Defining now in the more or less usual way the local truncation 

error of the method and with its help the order it can be proved 

without substantial difficulties that the method of order at least 

1 is convergent and that the method of order p leads to the accu

racy of order hP (supposing that the exact solution is sufficiently 
smooth). 

If we now want to study the A-stability of a BO method we must 

apply it to the equation (1.1). If we eliminate unnecessary values 

of the approximate solution we get 

(2.4) Ҷr+l)k Q(ff
u
rk» г = 0,1, 

where 

(2.5) z = hA, 

(2.6) Q(z) = det(I - zC) 

and P(z) is the determinant of the matrix which is obtained from 

the matrix I - zC by replacing its last column by the vector 

e + zd where e = (1,...,1) • Thus, the BO method leads in this 

special situation to the rational approximation of the exponential 

function exp(kz) and the fulfilment of the inequality 

(2.7) tø 

for any z with a negative real part forms obviously the necessary 

and sufficient condition for the A-stability of the BO method. 

Further, the class of BO methods has such a property that to any 

rational approximation of the exponential there exists a BO method 

such that the ratio in (2.4) is exactly this approximation. This 

fact is very important and it implies among other that in 
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the class of BO methods there exist A-stable methods of arbitrarily 

high orders© 

3o Approximate solution of abstract differential equations 

Let us pass now to the numerical solution of parabolic differen

tial equations• As we have mentioned above the problem we are mostly 

interested in is the problem of the order of accuracy with respect 

to the time mesh-size. In order to emphasize this fact we will not 

deal in what follows with the partial differential equations of 

parabolic type but we will be interested in the abstract ordinary 

differential equation 

(З.D -Й--- = Au(t) + ŕ(t), t É (0,T) 

with the initial condition 

(3.2) u(0) = ^ 

where the unknown function u(t) is a function of the real variable 
t with values in a Banach space B, the given function f(t) has 
also its values in B and is assumed to be continuous while A is 
generally an unbounded operator in B# We will suppose about it 
that its domain 2) (A) is dense in B, that A is closed and that 
it is the generator of a strongly continuous semigroup of operators, 
i.e., that there exist (real) constants M and u) such that 

(3.3) | | ( A i - A Г n | | < 
(Be X - (0 )

n 

for any positive integer n and for any (complex) A such that 

Re \ > u) • In this situation, it is possible to speak also about 

the generalized solution of (3.1)i(3*2) which is defined by the 

formula 

(3.4) u(t) = U(t)^ + / U(t -<r )f(«tr )ă<ť 

where U(t) is the semigroup generated by A. Consequently, this 

generalized solution exists for any ̂  6 Bo 

Let us apply the BO method to the problem (3.1),(3.2). We get 

(3.5) K + 1 i = runi + h c ® A run + 1] + hD@A r u i + h c r f i + h D u-

л n+k W Ln+k 
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where D is the diagonal matrix with the components of the vector 

6 on the main diagonal and the operator C ® A mapping 0 (A) x 

• •• x od (A) into B x ••• x B is defined by 

(3.6) C фA = '
C
11

A 

c
kl
A. 

c
lk

A 

c
kk

A 

and an analogous definition holds for the operator D(x).A • 

Here we cannot conclude as simply as above that (3*5) has a so

lution since here the operator (I - hC(x) A) is generally unbounded. 

Thus, the first question which must be answered is the question of 

the feasibility of our method. About this problem the following 

theorem can be easily proved* 

Theorem 3.1 Let A be the generator of a strongly continuous 

semigroup of operators and let C have its eigenvalues in the right-

hand half plane» Then there exists h such that the operator I -

hC(x)A 

(3.7) 

has a bounded inverse for all h<^h
Q
 and it holds 

(I - Һ C ® A ) " 
"11 lk 

M
kГ 

M
kk 

where M.. are rational functions of hA» 

Strictly speaking, this theorem guarantees the feasibility of 

our method only in the case of the classical problem, i.e., in the 

case ^ 6 S) {A). But the operators M. . from Theorem 3»1 allow to 

rewrite (3«5) in the form which has sense also in the general 

case ^ 6 &. The details will be omitted* 

The practicability of the method does not guarantee the conver

gence. The convergence is controlled, as it can be expected, by the 

behaviour of the operator R(hA) = P(hA)Q (hA) where P(z) and 

Q(z) are the polynomials defined by (2.6). 

Theorem 3*2 Let a BO method of order p ^ 1 with a regular 

matrix C be given and let A be the generator of a strongly con

tinuous semigroup of operators. Then the approximate solution ob

tained by this method converges at the point t to the generalized 

solution of the problem (3*1)•(3*2) if and only if 
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(з .8 ) I I R I 1 ( EÍ A ) i ^ M ( t ) 

for n = 0,1,•.. Moreover, supposing that the generalized solution 

is sufficiently smooth the order of the error is hP. 
The proof is a simple consequence of expressing Rn((t/kn)A) by 

the Dunford integral. 

From this theorem it follows immediately that, e.g., in the case 

of a Hilbert space and a selfad joint operator A the A-stability 

is sufficient for the convergence. In general case, the results are 

not yet final. Nevertheless, the following theorem solves our pro

blem in a special case. 

Theorem 3.3 Let an A-stable BO method of order p > 1 be given. 

Further, let A be an operator with the domain which is dense in 

B and let its resolvent (A I - A)"" satisfy 

(3.9) ||C X n: — A)" 1! < M d + |x| ) q , q ̂  o, 

for Re A > u) • Then it is possible to apply the method to the ho

mogeneous problem (3*1),(3*2) with this operator and the sequence 

of elements obtained in this way forms for ̂  6 <0 (A ) where I > q + 1 
a convergent sequence. 

Proof. Let^ > q + 1 and let us fix t and ^ 6 2 (A ). 

According to the preceding we have to prove that the sequence 

(3.10) un = R
n(-|-A)^ 

converges in B. To prove this fact, let us put first of all Un = 

ĵ A , Re A > cO.̂ , |A| <. Kn] where CO, > cJ and K is such 

a constant that the function R((t/k)A ) is holomorphic outside the 

circle |A| < K. In virtue of this fact it follows immediately that 

R((t/kn)A ) is holomorphic outside Un for sufficiently large n. 

Further, since ^ 6 °o (A ), there exists z e B such that 

(3.11) 7 = (A0i - k)~£zQ 

and A 0 is an arbitrary element from U-,. Thus, if we denote by 

' n the boundary of U we can write, for any sufficiently large 

n and for any m > n, 

(3.12) un = R
n(-^A)(A0I- A ) - \ = 
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2 ^ 1 / R n ( ^ A ) ( A o - A r / ( A i - A r 1 z 0 d A . 
r 
m 

The assumption (3«9) a l lows us t o pass i n (3»12) t o the l i m i t for 

m —> oo © We get 

ь)+ico 

(3 
- / , 1 - .ч-l-. 1 3 ) n^-^j f ^JtA^A^Ai-AlV-

^-,-ІCD 

The property |R(A )| < 1 for Ee A < 0 (following immediately 

from the A-stability of the given method) implies the existence 

of a constant L (independent of n) such that 

(3.14) I
R 3 1 (

E I
A )
I -^ exp(tL) 

for n = 1,2,••• and for Re A = u)^. Thus, the function 

M exp(tL)(A
0
 - A T ^ U +|A|

q
) 

forms an integrable majorant for the integrand in (3»13) and we can 

pass in (3*13) to the limit under the integral sign» We obtain 

OL+ico 

(3.15) lim *n

s-5Jri J exp(A t)( A
Q
 - A )"'( A I - A ) "

1
* ^ 

n—> oo <o-ioo 

and since the last integral converges absolutely the assertion of 

the theorem follows immediately. 

Since in the case that A is the generator of a strongly con

tinuous semigroup of operators it is possible to choose for q in 

Theorem 3*3 the value 0, it follows that in our situation the A-

stable method is convergent for problems with sufficiently smooth 

initial data. 
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