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A NEW DEFINITION AND SOME MODIFICATIONS 

OF FILIPPOV CONE 

I.Vrkofc , Praha 

Let G be a region in an n+1-dimensional Euclidean space R 

and let f(t,x) be a measurable function f : G-*R . Denote by 

F(t,x) the set 

(1) F(t,x) = 0 Pi Conv f(t,U(x,d)-N) 

d>0 N,m(N)=0 

where U(x,d) = {y : ||y-x ||<d}CRn , NCU(x,d),m is the Lebesgue 

measure in Rn , Conv A is the closed convex hull of the set A. 

The set {[j-bqy] : Q"° > yGF(t,x)} is called the Filippov cone at 

the point [t,x^)€G and mapping []t,x]—F(t,x) the Filippov mapping. 

A vector function x(t) is a generalized solution in the Filip-

pov sense of x = f(t,x) if x(t) is defined on a nondegenerate in

terval I, [t,x(t)]EG for t£I, x(t) is absolutely continuous on 

I and x(t)GF(t,x(t)) for almost all tGl. The notion of Filip

pov's generalized solutions depends essentially on formula (1). 

J.Kurzweil established a certain minimum property of the mapping F 

in his book about ordinary differential equations not yet published. 

We shall mention the property in more detail later. The purpose of 

the lecture is to show that the Filippov mapping can be constructed 

on the basis of this property and to present some modifications offe

red by this approach. 

The autonomous case 

First some definitions and notation. Let &D be the class of all 

subsets of R and let h be a mapping h : G-+&0 where G is a 

region in R . The mapping h is called locally essentially bounded 

if to every x E G there exist numbers d>0 and c = 0 such that 

m {x : xGU(x0,d), h(x)^U(0,c)} = 0 . 
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The mapping h is called upper semi-continuous if to every d>0 

and xEG there exists r > 0 such that h(y) CU(h(x) ,d) for yE 

EU(x,r) where U(A,d) is the d-neighbourhood of the set A with 

U(0,d) = 0 . 

Denote by C0 the class of all compact subsets of R and by £0 

a class fulfilling 

a) to every A E C 0 there exists a set BE£ 0 , ACB ; 

b) i f B E £ 0 then CM^Eto 5 
P P 

c) if A E £ 0 then A € C0 • 

Let C t 6 and Q, be classes originating respectively from C0 , £0 

and (L0 by excluding the empty set. 

Further, let |h ,zEZJ , Z^0 be a family of mappings h : G-*tf/0. 

The greatest lower bound h : G-* &0 of the family is the mapping h 
defined by h(x) = O h (x) • We shall write h = A h„ • The map-

zEZ 2 zEZ z 

ping h-^x) is before h2(x) (ĥ  = h2) if h-^xJChgtx) for all 

xEG . 

Definition. Let f be a mapping f : G-+Cb and i a class such 

that £0 fulfils a) to c). Denote by R(f,£ ) the family of all map

pings h fulfilling 

i) h(x)E£ for all xEG ; 

ii) h is upper semi-continuous on G ; 

iii) f(x)Ch(x) for almost all xEG . 

The condition under which the set R(f, £) is nonempty is given 

in 

Theorem 1. Let a class t0 fulfil a) to c). The set R(f, £) is 

nonempty if and only if the mapping f is locally essentially bounded. 

Given a class t and a mapping f, Theorem 1 enables us to con

struct the greatest lower bound S = /\ h • Basic properties 

hER(f, t) 

of S are given in 

Theorem 2. Let a class t0 fulfil a) to c). If the mapping f:G+# 
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is locally essentially bounded then SER(f, £) . 

The mapping S depends on the class £, . The most important 

classes are subclasses of % where % is the class of all compact, 

convex and nonempty subsets of Rn. In these cases the existence theo

rem L2J c a n b e applied due to Theorem 2 to a differential relation 

xES(x) . Thus if a locally essentially bounded mapping f and a 

class £ c X are given, then the mapping S exists and its proper

ties guarantee that the set of all solutions of the differential re-

lation xES(x) is nonempty. These solutions can be called £ -gene-

ralized solutions of the differential relation xEf(x). If £ = % 

then the £-generalized solutions of x6f(x) can be called the ge-

neralized solutions of x€f(x) in the Filippov sense. This defini

tion is justified by the following theorem. 

Theorem 3* Let f be a measurable and locally essentially boun

ded function. If I = % then S = F . 

This theorem directly implies that the j£-Seneralized solutions 

of x = f(x) are exactly Filippov's generalized solutions of the 

equation. Theorem 3 together with the definition of S yield F 4 h 

for hER(f,X). This means that F is the minimum mapping from 

those fulfilling i) to iii) and this is the minimum property mentio

ned in the introduction. 

n 
Let Q be the class of all Cartesian products TT J. of com-

i=l 1 

pact, nonempty intervals and put Q0 = Q U \ 0 } . Certainly Q0 ful

fils conditions a) to c). Another interesting choice of £ is 

i = a. 
Theorem 4. Let f be a measurable and locally essentially boun

ded function. Assume £ = Q> • Then a vector function x(t) is an 

f> -generalized solution of x = f(x) if and only if x(t) is a ge

neralized solution of x = f(x) in the sense of Viktorovskii. 

The generalized solutions in the sense of Viktorovskii are defi-
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ned in [V] : A vector function x(t) is a generalized solution of 

x = f(x) in the sense of Viktorovskii if x(t) is defined on a non-

degenerate interval I, x(t) is absolutely continuous on I, if to 

every d>0 and to every subset N of I*G with zero n+1-dimensio-

nal Lebesgue measure exist vector functions z^'Ct), i=l,...,n , de

fined on I such that z(l)(t)EG for tGl , fi(z
(l)(t)) are in-

tegrable on I , ||x(t) - z(l)(t)|| < d on I , ^ ( t ) - xi(tQ) -

t 

- J fi(z
(i)(s))ds |<d for t,tQEI and [t,z(i) (t)] ̂ N for al

to 

most all t€l and i=l,..-.,n . Theorem 4 is a consequence of theo

rems from [4J • 

Let us sketch the proofs of the previous theorems. If R(f, £ ) 

is nonempty, i.e. there exists h(ER(f, £ ) , then items ii) and 

iii) immediately imply the local essential boundedness of f . On 

the other hand, let f be locally essentially bounded. Choose 

x E G . By definition there exists d>0, c>0 such that 

m (x : xEU(xQ,d), h(x)£u(0,c)} = 0 . 

Due to a) there exists B € t , U(0,c)CB . Denote by h the 
xo 

mapping hx (x) = B for xEU(xQ,d) and hx (x) = Rn for x ^ 

^U(x ,d) . The mapping h fulfils ii) and iii). We can easily 
o 

construct a set X^ such that the greatest lower bound h = / \ h 
x o e X o ° 

fulfils all conditions of the definition. Theorem 1 is proved. 

We pass to the proof of Theorem 2. First we mention that the set 

R(f,£) is closed with respect to the greatest lower bounds of 

countably many mappings, i.e. we have 

Lemma 1. If h ER(f, 6) then A h GR(f, t) . 

The second step consists in approximating S by a sequence of map

pings from R(f, £,). • The approximation of S at one point is given 

by 
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Lemma 2. Let xEG and d> 0 be given. Then there exists hE 

6R(f, i) such that h(x) C U(S(x), d) . 

This lemma yields that S is upper semi-continuous. Since the 

mapping h is upper semi-continuous there exists r> 0 such that 

h(y)CU(h(x),d) for yEU(x,r). By the definition of S and by 

Lemma 2 we have S(y) C h(y) CU(h(x) ,d) CU(S(x) ,2d) for yEU(x,r). 

The upper semi-continuity of S is proved. 

Let now a point xEG and a nonnegative integer p be given. 

By Lemma 2 there exists hER(f, £ ) such that h(x)C U(S(x) ,1/p). 

Since h is upper semi-continuous there exists r(x,p)>0 such that 

h(y)CU(h(x),l/p)CU(S(x),2/p) for y EU(x,r (x,p)). For a given p 

the balls U(x,r(x,p)) cover G and we can choose a countable co

vering. Denote the corresponding points by x1 , i=l,2,... and the 

corresponding mappings by h ,p . The upper semi-continuity of S 

and the properties of h ( l , p ) imply /\ h ( l , p ) i S. Since S i 
i>P 

i A h ( l , p ) by the definition of S we have S = f\ h ( l , p ). The 
i,P i,P 

statement of Theorem 2 now follows from Lemma 1. 

Theorem 3 can be now easily proved. 

The inclusion FER(f, %) follows directly from formula (1). Let 

now a mapping hER(f,X) be given* Choose a point x E G and a 

number d>0. There exists r> 0 such that h(x) CU(h(xQ),d) for 

xEU(x ,r) and condition iii) implies f(x)Eh(x)CU(h(x ),d) for 

almost all xEU(xQ,r), i.e. the set Np = (x : xEU(xQlr),f (x) £ 

^U(h(x ),d)} has Lebesgue measure zero. Put N = {J N . Consider 
° r> 0 

the formula (1) with the set N instead of N. We obtain F(xQ)C 

C O c<>nv f(U(x . r)-N )C Pi U(h(x ),d) = h(xft) . We proved 
d>0 ° r d>0 ° ° 

F d h which completes the proof of Theorem 3* 
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The nonautonomous case 

The construction of S in the nonautonomous case can be reduced 

to the autonomous case. Denote the points of R+-, by [_tixj where 

tER-, and x ^ R
n • we shall use the notation A.. ={x : [t,x^]EAJ 

for ACfl + 1 • Let f be a mapping f : G -*d0 where G is a regi

on in -* -. • We can define mappings ft on Gt for every t by 

ft(x) = f(t,x) for xEG t . 

Definition. A mapping f : G—>CU where G is a region in R + 1 

is t-locally essentially bounded if to every point f^0
,xol^G the

re exist d>0 and a function c(t) defined and integrable on the 

interval <t -d,t +d> such that mjx : xEU(x ,d),f(t,x)^ 

£u(0,c(t))} = 0 for almost all tE <t0-d,t0+d> . 

Assume that f is t-locally essentially bounded. Then there 

exists a set T , TCR-, with Lebesgue measure zero such that ft 

are locally essentially bounded for tER-j-T • We can construct tne 

corresponding S for tER-,-T • We put S(t,x) = S (x). The mapping 

S is defined on G-T*R , i.e. almost everywhere on G. As in the 

autonomous case the solutions of xES(t,x) will be called the £-

-generalized solutions of xEf(t,x) • 

Formula (1) implies also -?t(x) = F{t,x) for almost all t and 

this allows us to generalize Theorem 3. 
« 

Theorem 5» Let f be a measurable and t-locally essentially 

bounded function, where G is a region in Rn+-i • If t = % then 

S(t,x) = F(t,x) for almost all t • 

Also Theorem 4 can be generalized. 

Theorem 6, Let f fulfil the conditions of Theorem 5. If t = 

= Q then an n-dimensional function x(t) is an £ -generalized so-

lution of x = f(t,x) if and only if x(t) is a generalized solu-

tion of x = f(t,x) in the sense of Viktorovskii, 

Nevertheless, the nonautonomous case is more complicated than 
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the autonomous one since a problem of measurability of S may arise. 

Definition. Let h be a mapping h : G —• Cb0 , G C R +, 9 The 

mapping h is measurable if the sets {[t-x] : h(t,x)flA t 0} are 

Lebesgue measurable for all closed sets A, A C R . The mapping h 

is t-measurable if the sets {t : h(t,x)nA ?- 0 } are Lebesgue mea

surable for all closed sets A and all *ER„ • 
n 

Generally, both measurability and t-measurability of f imply 

neither measurability nor t-measurability of S but there is a wide 

family of classes £ for which the problem has an affirmative ans

wer. 

Let a class £ be given. If A is a set in R , then £(A) = 

= ( \ B is called the £-closure of A • The £ -closure 

B D A , B G £ 

exists if and only if A is bounded, and £(A)E£ if and only 

if £(A) / 0 . 
Definition. The £-closure is called continuous if ( l £ (AR) = 

n 
= £ ( ( l A ) for every sequence of nonempty, compact sets A-.D k^D 

n n 

Theorem 7. Let f be a measurable and t-locally essentially 

bounded mapping f : G—* & , where G is a region in R . If a 

class £0 fulfils a) to c) and the £-closure is continuous then 

the corresponding mapping S is both measurable and t-measurable. 

This theorem can be applied e.g. for the classes £ s C • 

£ = X , £ = Q etc. 

Sketch of the proof of Theorem 7. First we shall investigate the 

case 6 = C. Let x€G. denote 

Bt(x) = {z : me[f^
1(U(z,d2)) C\ U(x,d-L)] > 0 for all 

dx>o , d2>o} 

where ^ ( A ) = {x : f(t,x)nA/-0} and me is the Lebesgue outer 
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measure. 

Lemma 3. Let f be a t-locally essentially bounded mapping 

f : G - > & and £ = C . Then S(t,x) = B(t,x) = Bt(x) almost 

everywhere in G . 

If f is a measurable function then the asymptotical continuity 

of f yields the property iii) (i.e. ft(x)EBt(x) ). Let 

x-->xo , yp^
B^(x

p)i yp—*y0 •
 I f numbers d^> 0, d 2>0 are given we 

can find an index q such that ||x -xo|| < d^/2 , || y -yo ||<d2/2 

for p>q . Since ft
1(U(yQ,d2) )nu(xo,d]L) Dft

1(U(yp,d2/2)) n 

nu(x ,d-,/2) and the measure of the latter set is positive we ob

tain yQGB.(x ) as a consequence of y D ^
B + ̂ XD) * T n e l a s t asser

tion implies that Bt are upper semi-continuous. Certainly 

Bt(x)CC so that BtER(ft,C) and S-^B . The proof of B-^S is 

similar as in the proof of Theorem 3. In the general case ( f is 

a mapping) the proof is much more complicated. 

In the case g = £ we can prove Theorem 7 using a lemma from 

measure theory. 

Lemma 4. Let f be a measurable and t-locally essentially bound

ed mapping f : G —* GU • Then the sets 

{[t,x] : me[ft
1(O0nU(x,d)] > o } are Lebesgue measu

rable in G for every open set C and d>0 . 

The sets (t : m [f~ (00 nu(x,d)] > o} are Lebesgue measurable 

on R, for every open set (Ĵ, d>0 and xGG, • 

(£) Now we shall use the notation S ' to stress the dependence 

of S on £, . Since £ C C we have S ( C ) C S ( £ ) . 

Lemma 5. Let f be a t-essentially bounded mapping and let the 

£ -closure be continuous. Then S^ *(x) = £(S*. )(x)) for almost 

all t . 

_ o(Є) 

Since sj.C)(x)Cs[£)(x) we obtain 6.(s[C)(x)) C 6 (S^£)(x)) 

= S£t;(x) . On the other hand, to every d1> 0, x QGG t there exists 
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d 2>0 so that <f(U(s£C)(xo),d2))CU(£ (s[C) UQ) ,dx)) since the 

£ -closure is continuous and the set S^ (x ) is compact. The 
(C) 

upper semi-continuity of S^ implies that there exists d^>0 

so that s[C)(x)CU(s[C)(x0),d2) for xGU(x,d3) . These inclusions 

yield that the mappings £ (S> '(.)) are upper semi-continuous. 

Condition iii) follows from 6(s[C)(x))Ds[C)(x) so that 

£(s{.°(.))ER(ft,£) and finally sj.e)(x)= 6(s{.C)(x)) . 

Theorem 7 in the general case now follows from 

Lemma 6. Let h be a measurable mapping h : <0,1>—> C • 

Then £(h(.)) is a measurable mapping <0,1>—> £ . 

The case of discontinuous closure was also investigated. Gene

rally there exists a class £ such that the £-closure is discon

tinuous in only one set A but the corresponding problem of measu-

rability has no positive answer. Nevertheless, if some regularity 

conditions are fulfilled then the problem has an affirmative answer. 
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