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CONTROLLABILITY OF LINEAR AUTONOMOUS PROCESSES 

Roberto Conti 
Firenze, Italy 

1. Preliminaries. 

We shall examine different kinds of controllability for a control 

process represented by a family of ordinary differential equations 

(A,c) x « A x - c 

depending on a control parameter c : t •+ c(t), a function of time t 

with values c(t) e OR belonging to a set of functions 

C. « {c c Lloc(-R# -R
n) - c(t) c T, a.e. t > 0} 

where r is a given non empty subset of JR • 

Further, the real n * n matrix A is independent of t . 0 

For each c e C_, v € 3R , x defined by 

(1.1) x(t,v,c) - e ^ Cv- í e~sA c(s) ds] •r« 
is the unique solution of (A,c) such that x(0,v,c) • v • 

Therefore we shall say that v is transferable into x * 3R ->y 

means of (A,c) if x(t,v,c,) * x for some t > 0, and we shall 

say that 

(1.2) V(t,A,r,X> - {|e"
SAc(s) ds + e ^ x * c e C_} 

is the set of points which are transferable into x a t time t . 

Symmetrically 

CX- í e 
*r\ 

(1.3) W(t,A,Г,
X
> » {e** Cx- í e ^ c ţ в ) ds] : c e C-} 
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is the set of points which are reachable from x at time t • 

We shall write V(trArT) rW(trArD instead of V(trArrr0)r 

W(trArTr0)r respectively. D 

2. Complete controllability. 

Defining (Arc) (or (ArT)) as completely controllable when 

(C,.) 3 t > 0 : V ( t r A f D 

is justified by the fact that, according to (1.2), (1.3), V(trArD - IR
n 

is equivalent to V(trArTrx) • W(trArTrx) - -R
n , Vxc 3Rn r so that 

(C.) means that for every pair v, w £ 3R there exist t > 0r I vr w 
c C„r such that x(Orv,c ) » \ 

w T vrw 
From the properties of V(t,A,r) : 

c c C„r such that x(0,v,c ) * vr x(t ,v,c ) 
vrw T' vrw vrw vrw 

V ( t r A,pD « p V ( t r A r D r p € 3R 

V ( t rA rT + x) • V ( t rA rT) + [ e"8Ax dsr x € TRn 

Jo 
V ( t r A r D - CO V ( t r A r D 

v(t rA rr) - v(t rA rcoT) 

it follows that (C1) allows us to replace the set r by scalar mul

tiples pTr p j& 0, by translates r + x* and by the (topological) 

closure cor of its convex hull cor. 0 

Further, let us denote by ci the subset of those c € C_ which 

are piecewise constant and let 

V°(trArD « {f e"
8Ac(s)ds $ c € C p . 

Then we have (A. ANDREINI [1] - A. BACCIOTTI [23) 

V°(trArD - V (trArcoD 

V°(t,A,r) « V(trArD 

so that, with respect to (Cj), Cr can be replaced by* cj. D 
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If (C1) holds r must be unbounded, hence cor is the union of 

half lines (not necessarily lines)• D 

The dimension of V(t,A,T), i.e., the dimension of its affine hull, 

is independent of t and it is « n iff the following condition 

(a) y € C , A y » Xy, y V « const. «* y « 0 

i s s a t i s f i e d . 

I f (C.) holds we can assume 0 € I* « cof , so tha t 

(2 .1) (C,,) =» (a0) 

#rhere 

(a0) y є <CП, A*y * Xy, y*Г « 0 -» y « 0. D 

Because of the identity 

V(t + т,A,Г) » V(t,A,Г) + e " ^ V(т,A,Г), t,т > 0 

if V(t,A,D » 3R
n
 then V(t + T,A,D « 3R

n
 for all T > 0. 

Therefore (C.) gives rise to two possibilities, namely, either 

(cp V(t,A,T) « 3R
n
, V t > 0 

(instant complete controllability) or 

(Cj) 0 < inf (t > 0 : V(t,A,T) « 3R
n
 > < +• 

(delayed complete controllability)• D 

When r is a subspace of 3R we have 

V(t,A,Г) » Г+AГ + ... + A
П
~

1
Г 

independent of t, and (C
1
) « (C!) « (a

0
). 

When r is a subspace (a
0
) is also equivalent to the condition 

74 



(b) the orthogonal projection of cor on every non trivial A in

variant subspace Y of 1R (YjMO), Y=A Y) contains a line. 

In general, (b) »> (a0), but not conversely. In fact we have 

(R.M. BIANCHINI TIBERIO C33) 

(2.2) (C«) - (b) 

so that condition (b) serves to characterize instant complete con

trollability. If follows, in particular, that (C!) requires that 

cor contain at least an entire line. D 

3. Global controllability. 

Let us now denote by . V(A,r,x) the set of points which can be 

transferred into a given point x at some undetermined time, i.e., 

let 

v(A,r,X) « U v(t,A,r,x) . 

t>0 

Symmetrically let 

w(A,r,x) - U w(t,A,r,x) 
t>0 

be the set of points which can be reached from x • L e t also 

V(A,D «V(A,T,0), W(A,D «W(A,r,0). 

A much weaker type of controllability than (C.) is represented by 

(C2) V(A,D - W(A,D - 3Rn . 

This means that every point v can be transferred into every point 

w , provided the duration of the transfer is not fixed in advance. 

So we can say that (A,c) (or (A,D) is globally controllable. 

Global controllability does not require that the set r be unboun

ded. 0 

Actually, (C2) consists of two properties, namely 
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(T) V(A,D '- 3R
n 

(global transferability into 0) and 

(R) W(A,D * lR
n 

(global reachability from 0) which are independent each other. 

However, since W(A,T) = V(-A,-r), one can limit himself to consider 

(T) or (R). D 

With respect to (T) we are allowed to replace T by any scalar mul

tiple pr, p ft 0, or by the convex closure cor , but not by a tran

slate r + x • 0 

If we denote by lin V(A,D the linear hull of V(A,D, then, 

obviously (T) =[> (LV), where 

(LV) V(A,D » lin V(A,D. D 

Clearly (T) also implies the following property 

(C
3
) 0 є int V(A,Г) 

and, actually 

(3.1) (T) - ( L V ) A (C
3
) 

It can be shown that 

(3.2) 0 є int V(A,Г) == 0 є int W(A,Г) 

so that if we define 

(LW) W(A,Г) - lin W(A,Г) 

we have 

(R) - (LW)
 л
 (C

3
), (C

2
) - (LV) л (LW) л (C

3
>. D 
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It can be shown (L.A. KUN [11]) that when T is bounded then (T) 

&), (C )) holds if and only.if (C ) holds 

for all the proper values X of A . D 

((R), (C
2
)) holds if and only.if (C

3
) holds and ReX <; 0 (--0, =0) , 

4. 0-local controllability. 

From (3.2) it follows that if (C.J holds then there is a neighbor

hood N of 0 such that every point in N can be transferred into 

every point also in N at some undetermined time. Therefore we can 

say that (A,c) is 0-locally controllable when (C-) holds. • 

Replacing r by pT or by cor leaves unaltered property (C ), 

whereas it can be destroyed by a translation of r . 

If we introduce the condition 

(c) y c ЗR , A y =- Xy, y Г £ 0 -=> y 

the following implication holds 

(C3) -==> (a) A (c) . 

The converse is not true unconditionally. It becomes true, however, 

if we assume 

0^) 0 € coT 

(V.I. K0R0B0V - A.P. MARINIC - E.N.PODOL'SKII [10]) so that (a)A (c) 

characterizes (C-) under the additional assumption (H,.) . 

This result is the last of a series of steps (S.H. SAPERSTONE -

J.A. YORKE [14], S.H. SAPERSTONE [13], R.F. BRAMMER [5], M. HEYMANN • 

R.J. STERN [7]) aimed at replacing by (H.) the stronger, classical 

condition (E.B. LEE - L. MARKUS [12]) 

(H2) 0 c int rel cor 

where int rel cor is the interior of cor relative to its affine 

hull. Such replacement is needed by several applications. Q 
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Recently V.I. KOROBOV [91 gave a different characterization of (C.) 

under the assumption (H,.). D 

Clearly if 

(4.1) 3 t > 0 : 0 € int V(t,A,T) 

then (C-) follows. The converse is not so obvious, but nevertheless 

true (R.M. BIANCHINI TIBERIO C3l). 

On the other hand if (4.1) holds then there are two possibilities, 

namely, either 

(C') 0 € int V(t,A,T), V t > 0 

(instant 0-local controllability), or 

(C^) 0 < sup {t > 0 : 0 / int V(t,A,r)} < + « 

(delayed 0-local controllability). 

Note that, in general 

0 < inf {t ^ 0 : 0 € int V(t,A,T)} < 

< sup {t > 0 : 0 / int V(t,A,T)}. D 

It can be shown (D.H. JACOBSON [8]; R.F. BRAMMER [61; R.M. BIAN

CHINI TIBERIO [3]) that (C') holds if and only if, denoting by 

con cor the conic hull of cor , (A, con coD is instantly comple

tely controllable, i.e., 

(4.2) {C'3) * V(t,A,con cor) « 3Rn, Vt>0. D 

5. Local controllability. 

Let us now define the set 

C(A,D - {x c 3Rn : x c int V(A,T,x)}. 
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Since, equivalently 

C(A,Г) - [x € Ш П
 : x c int W(A,Г,x) 

we can say that (A,D is locally controllable if C(A,r) ? 0, i.e., 

if 

(C
4
) 3 x c lR

n
 : x c int V(A,r,x) . 

This means that there is some x e TR , not necessarily - 0, and some 

neighborhood of x whose points can be transferred into each other. 

Clearly (C.) means 0 c C(A,T) and (C ) «> (CJ. D 

The main properties of C(A,D are (R.M. BIANCHINI TIBERIO [4]): 

C(A,D - C(-A,-D * C(A,coF) - co C(A,D « int C(A,T). D 

In order to determine those pairs (A,T) for which (CJ holds we 

have to consider the set 

R(A,T) - (x° e IB? : A x° € T) 

of rest points of (A,c) (M. HEYMANN - R.J. STERN C73): if x° € R(A,D 

then xD is a constant solution of x » A x - A x ° . Then it can be 

shown (R.M. BIANCHINI TIBERIO C41) that 

(5.1) (C4) « (a)л(đ) 

where 

(d) R(A, int rel coГ) + 0 . D 

6. Final remarks. 

The relationships among the different kinds od controllability con

sidered here are represented by 

(C^)A(CJ) - (C^ «-> <C
2
) --> (C'jAtCj) - (c

3
) * (c

4
) 
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an the arrows => cannot be reversed. However when T is a cone with 

vertex at 0 then ( O = (C.) and when r is a subspace we have 
1 4 

(C|) = (C4). D 

The set C(A,D is the set of locally controllable points. If 

x c C(A,D then, either x e int V(t,A,T,x), Vt > 0, or 

0 < sup (t > 0 : x c int V(t,A,T,x)}. Therefore C(A,D is the union 

of a subset C(A,D of instant controllability and a subset C"(A,r) 

of delayed controllability. It can be seen that if C(A,D t ft then 

C'(A,D ?- 0. D 

So far only those pairs (A,D for which (CJ) or (C£) or (C4) holds 

have been characterized, respectively by (2.2), (4.2) and (5.1). 

As far as we know similar characterizations of (C") (hence of 

(Cj)), of (C2), of (C|j) (hence of (C3)) are still lacking. D 
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