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MATRIX ANALYSIS OF CERTAIN DYNALICAL SYSTEMS IN TECHNICS
{(at linesr, nonlinear, or random diff, and int. equations/

Francis Fazekas

Budapest, Hungary

The eigenval problem for a complex system of vibrating
bars a} is chosen from ones treated in the lecture to
be investigated here at last skitchily. Marguerre’s, Egervary’s

and author?s papers /1-4/ and their literatures be recommendad
for more detagls. - The whole problematics of the lecture can be
soon read in /&7

The eigenvalue problem of a vibrating (turning/ system

1. As well known, the gcalar differential equation [DE_} of
the unloaded vibrating 'bar(mode].] and one of the unloaded turning
axle ﬁnode],) too (mamely in first approximation, with negligation
of certain additional effects of turning /3]/, then its equivalent
yector form /%7 is as follows:

yn-k"’ =0 y + gy -0 éstoité};y-[y.y’-y"-ﬂﬂ
Y/to]'yonony [tJ'Y'" yoﬁo) Yo 0<k= -2“1; &-— =-? a2
-? 3y - 9.’? Tl =2 ; d+1 >
P=- e "+ k e 8

Consequently, it can be treated as g linear, time-invaria.nt sys=
Yem got in the state space E, .{y} .

A dagic ﬁaolvins functiong/ system of the DE s/, then its
¥ronsii-matpix and ~determinant follow here (%,5/
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(¥ _[ctict, shict, coskt, sinkt = g/t/;[zfi)[y]., c s ¢
s[c, 8 C, S]t 5 ) ks kc -kS Kk

6 k% k%s kT &2
(3 /= | Y)|= det Y6/ = 4> 1®s e 4055,

By our matrix algoritim /57 DTAQ +1t [%}+1. axﬂ - ?ﬁ%: [yk& -e 1¥ [ﬁeky
ot sine (12030) e s VYR T T o> G
from Y/t,/ its inverse r}%o], then by multiplication the Green
-type matrix /&,57 I(t-t )= g[tjfl[%o} can be counted. With it,

tha general solution and the yo-cond.itioned particular one are
the followings: -

- - v 77
3 = e - Wt T = Wote)3g Tolbe/= UOTmBrery
— The former [éeometrical] figurations will be transformed - ad-
vantageously—into their technical variants /1,37 (Bs-0)

z=[7,1y ,-02%/c,-113/0] = [1y.ly',12y','13y"ﬂ=<1,1,12,13>zg;x,
(/=L (% = [1kydk[t/], z(e) = 1206 |L] | X8 -16r(tj-uk615416>o
2o/ = O e L -y [Ty 5y T 3
where I = ';-[En%, Zl- 517:: (3+8); ( at t-3 L & T

e Lo .1 639385 X% T, =
RS R Cu M5, T

The transit of the technical state vector z/%t/ from a
tg’l‘ to a t€T, or just from to-O to t=1 is given by the linear

transform /1,47 Ha,v/
2= & (W=2lo-v)ulto/ 2 28y, or m= HVZ(Ve(V= Tazo (2o-L 3
with values of the technical z/%t/ conditioned with arbitrary

2, (as well with 2; tog/. — E.g, at the boundary conditions

= »
Zo= [2,0,23,0] o amd 2zy= [21,0, 23:011, the homogeneous part of
(oY/ and its determinant (=0 for non-trivial solutiong) are for-

med 808 eee oce Oy
r = 2 4.2 ob, ¢/
g = 0} = F;? I‘{J[zl] * Zz5, Z)(A)=To = AT = cilcosk=0,
LO T z >
1 2 o 3 o [106]

which last one furfishes the eigen values lk-[2k+1,)3‘-’/2 (k=04lpeed
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E___:_ Now let be treated a symmetrical system of unloaded
gurning axles /vibrating barg), whose (left/ half consists of a/ a
’
massive rotor of constants ]b’ Moo EI,= C, 51-0 = tog tz t,=0,
i =0/ andof ‘ry unmassive axle stubs of constants 1, m ;,EI{
’
= Cy fb1+1- O=t;2t2%;1-1, 2,,,,, n/ connected serially
into the ﬁeft) half of a sole elastic axle (with whole length
2L = 25 ly, as e.g. a turbine’s axle /27 . . . . . (ila,b’

- Some gtub-rotor ratios and formulas (12a-e/
by= ELi/ET,  By= 1371, LAy~ {1 1102 5
4 .4 3
Simtili/peglo®0 Xy Xoe &y Bi/aymo,|0 01 L

express /2,37 the negligation of stub masses ﬂ:he stubs remain
only as elastic connectina elements], then the normalization of

z, /1,37 from the stub’s measures {1i, I;) to the rotor’s one
o . 2
ﬁb’ Iy) by the linear transform z;= 4 23 = {1, 1/ By, «,/ R,
U/ ﬁ>- Z; to have at the border points By ¢= fbi»fl' t;)
'
instead of the spring: 2z, 4% Z; = éi[igg_i the continuity:

° ~ —1° X o
BB - 050 B = 58 men By W1 B B Bhe) floag
0 1 Bk Bk
o o 1 B
o o o 1.4

Just these last ones furnishes the connectional conditions of _z'_’_ at

By,; (Tor i =0,1,...,0/. .
The transit of the normed technical vector _zﬁ oz the n
stubs and on the rotor given by n+l 1linear equations

A

) ° ° ° ° X -
§n+1 - é} !n,ao’! £1+1 = zi &i,.oo, Ea = éi 021’ ?-1 - ZO EO ﬁ}g}
can be united /1,37 to one on the whole axle given a sole linear

equation v

° X A X - o X -

Zos1= Zneee 23000 21 ¢ Zo 205 ZniZo Zo. asy
This last one will be detailed and filled with bovndary conditions
being similar to (10s) in the form /2,37 A3e)

Qa = 2503, By)y 5 = 1,2,3,4,5 1= 1,2,...,x>
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Zn41 = |0 |= |1 B BZ B3 rr‘o ZI 2 23 2y = ?nlgo-z-o;
2| [0 1 B, B To X1 IS
0 o o 1 Byl |® > 2'23 o Ziflz

whose geometrical dates B, are counted in our /3,47, with

corrections of /27 in B, and B;. The homogeneous part of this
linear equation

. .
%n+1 = 0-! = 1 Bl BZ B5 PO I‘a-] Zi = zﬂzz,oi g_z;,o
Ol |0 0 1 Byifds, yllzs > °
L 1 3 1 3

b gm Te Y
[ . . J

has the O-determinant [for non-trivial solutionsj » as the equation

of eigenvalueg = with the. "geometrical coordinates" X = By, T =

- 3[.’8132- By [from /27 =nd corrected by /3,47 in Yj- ﬂlﬂy
c*Z(R) = ~1+ftgk ~th2/-x+ PreX tn -+ 1- -gg[tgl thx) = 0,

On this base, one can draw the parabola-get of"technical parameter®
X (eiven by 12/

6(StEA- - /et . y) s ol
ey (M

and to the "point" (Xq, Y4} of the given axle [rotor + stubg)
can read out of the nomogram the value A i1 of carrier parabola,
finally can count simply the (first, minimal) s.c. critical angu-
lar velocity of axle ﬁ:ircular frequency of bar]

W= Ay B, (aec) asy

Further investigations [e.g. finer models, better approxima-
tions, additional effects of turning etc,) can be read in our /37,

2 References: /17 K.Marguerre: Vibration snd stabili
problems of beams treats matrices. J.Math., & Phys. /1956/. -
[2/ E,E =a§h:ngleisi me;:.hod <a.ppl:l.ed.:'-tzo gtm a L:m
stemrg critic ar velocity, {Hung. lang.> Mat. Lapok
94?. - /%37 BF,Fazekas: Beitrige zur kleinsten kritischen Dreh-
zahl des Rotors usw., I. Int. Koll. f£. Math,,Verdff.,Weimar, 1961,
-~ /47 F.Fazekas: Ordinary differentisl equations, Part II/A. Book

series MMGy /ed. Fazekas/, %ome B.VII.', part II Hung. lang.7.
Tankényvkiadd 1969 /sec.ed./. - /5/ F,Fazekas: Maf:giz analysis of
differential and integral equationg I-II-ITT, Bulletins for Applisd
mathematics /BAM/, TUB 1978-81, - /&/ F,Fazekas: Matrix analysis
of cert dynamical systems in technics ?the whole matter of this
lecture/. Prepared for the BAM,-—
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