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ON AN INITIAL-VALUE PROBLEM FOR A NONLINEAR TRANSPORT 
EQUATION IN POLYMER CHEMISTRY 

Herbert Gajewski and Klaus Zacharias 
Berlin, GDR 

We consider a matnematical model of emulsion polymerization. This 
model describes the time evolution of the particle size distribution 
function of a polymer within a chemical reactor. For tne physico-
chemical details we refer to /6,7,10/. The mathematical details and 
the proofs of our results, ensuring global.existence, unicity, po-
sitivity and some regularity of the distribution function, will be 
published in 131. 

1. The model equation. We assume the particle size distribution to 
be governed by the following equation 

(1) ||(t,v)+^(r(t,v,LT0f,K1f)f(t,v))=^Xk(v-w,w)f(t,.v-v/)f(t,w)dw 

- f (t,v) Jk(v,w)f(t,w)dw 
0 

with the initial condition 

(2) f(0,v) = fo(v) . 

Here denotes t€S=[p,T], the time variable, v-*0 the particle vo­
lume variable. The physical meaning of the unknown function f is 
such that f(t,v)dv is (proportional to) the average particle num­
ber per unit emulsion volume at time t with volume between v and 
v+dv • The function r is a given particle growth rate, depending 
on t, v and the moments of order zero and one 

oo OQ 

(If0f)(t) = / f(t,v)dv , (M-fMt) =- J vf(t,v)dv 
0 0 1 0 

of the distribution function, which can be interpreted as particle 
number and particle volume, respectively. The kernel k=k(v,w) 
describes the rate of coalescence between particles of size v and 
w . The general assumption on k is symmetry and positivity. 

Equation (1) may be looked at as a non-local first order par­
tial integro- differential equation for f . We do not know any ma­
thematical results concerning the full equation (1). Equation (1) 
with r*-0 is the classical coagulation equation which describes 
(with varying signification of tne variable v and with different 
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assumptions on the kernel k ) e. g. Brownian coagulatitoi in plants 
and gravitational coagulation in clouds. Especially for meteorolo­
gical applications see /9/f as to the mathematical side of the pro­
blem, Bee /1,2,4,5,8/. 

2. Some a priori informations about the solution. By physical rea­
sons we claim f(t,v)-*0 for t*0 , v^O ; f(t,0) = 0 , f(t,v)-->0 
as v—-*oa • Integration of equation (1) gives in our situation 

1 000° 
|^M0f =-^J/ k(v,w)f(t,v)f(t,w)dvdw*0 . 

Multiplication by v and integration yields 

f-rM.f^rfdv-O . 

So by coalescence the particle number M f decreases with time 
whereas the particle volume M.jf increases due to polymerization. 
Further in the special case that r = r(t,M f,M-jf) we have 

(3) 8Uppfc{(t,v)/ Väh(t)} , Һ(t) = jГdS . 

3. Assumptions. Our theorem formulated in the next section holds 

under the following assumptions on the rate functions r and k . 

A1. 

(i) r»r
Q
(v)r

1
(t,M

0
f,M

l
f) ; 

(ii) r
Q
 is twice continuously differentiable in R

+
»[0

f
oo) so such 

0-r
o
(v)^c

o
 , |r

Q
(v)|+ |r» •(•)!* const f vdR

+ ; 
(iii) r-j is nonnegative on S*(ofc°)x(Of<*>)? r . | ( « f x , y ) is /*-
Holder continuous for a /* > 0 , uniformly with reBpeaJLto x* y i-̂  
bounded sets of (0, °°)x(0, °°); r . , ( t f . , . ) is locally Lipschitz-
continuous, uniformly with respect to teS ; for each strictly po­
sitive and continuous function a on S the initial value problem 

V(t) -c0a(t)r1(t,a(t)fb(t)) f b(Q)=bQ> 0 f t€S 

has a bounded solution b • 
A2. 
The function k is continuously differentiable oh R+xR+ such that 

0--k(v,w) = k(w,v) 6 const(1 + (vw)"^) f /*--0 f 
0 ~ |$ ( v» w ) - ~const(1 4»~)k(vtw) . 
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Remark 1. A for applications relevant example of rates r and k 
satisfying A1 and A2 is given by 

M1 ~ 4 / 3 1/9 
r=r(M 0,M.p--R1(R2-4 + K*-m)1/d • 

° M0 Uo 

k=k(v,w) = K(v,w)"1/3 , 

(R.I, Rp, Rnf K given constants). 

4.The main result. For a Banach space X we denote by Cw(S;X) the 
space of 1-times weakly continuously differentiate functions on S 
with values in X. We introduce the weigth functions 

q(v)-- (1 + v ) * v"2*5 , V 7 2/.+| , 

P 2 ( T > - < 1 + Y > * +v~ 2 ( 1 + / 3 ) , A,1 . 

Let 

H=-{f«.L2(R+)/ llfll2-- J" q2f2dv<c:oo} ., H+ - { feH / f -* 0, a. e. in R+] . 
•• ' 0 

For sufficiently large y > 0 the operator A defined by 

Af = (4+P2)^ - h^ff)% • f' "SI • 
v q 

D(A) »{ffeH/ f - T 1 + 2 ^ h , h€C^(R+)} ,^2=Y+2/J(2>+1) , 
1 /2 turns out to be essentially selfadjoint in H • Let E = D(A ' ) be 

the energetic space of A • 

Theorem 1. Suppose A1, A2. Let in addition f ffE./iH+f-f ̂ 0 . 
Then the initial-value problem (1), (2) has a unique solution 
f feCw(S;Br.H

+)n CW(S;H). Moreover, the moments MQ and M.- satisfy 
the estimates 

0*MQf(t) *- MQf0 , 0-cM . ,^ ^ M .jf(t) £ b(t) , 

where b is the solution of the initial-value problem 

b» -- c^fr^t.l^f.b) , b(0) - M1f0 . 

5. Oalerkin's method. Let ( a
n)

c E be a system of functions complete 
in E and H n* span(h-,... .,h ). Further let (-̂ on) he a sequence 
such that tQn€K n, jf

on"^
f
0
 i n E •According to Galerkin's me­

thod we define approximate solutions f of f of the form 
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f _ = £ a.ítíh.ív) 
n i=1 1 í 

The coefficient functions a^t) we determine by solving the fol­
lowing system of ordinary differential equations 

(fnt + R W - (K fn» hl } • 1 = 1 »• fn(0'v)=fon(v> • 

Here (.,.) denotes the scalar product in H , R and K are 
some repolarizations of the operators generated by the transport 
term and the coalescence term in (1), respectively /3/. 

Theorem 2. Under the hypotheses of Theorem 1 the Galerkin approxi­
mates f converge in H uniformly with respect to time to the 
solution f of the initial-value problem (1), (2). 

Remark 2. Examples of appropriate basis functions are given in /3/« 

Remark 3* In our numerical computations it turned out to be useful 
to introduce a new independent variable x according to a trans­
formation v=h(t)+g(t)exp(cx), c=const, where h is the function 
defined in (3) and g is an appropriate scaling function. 3y means 
of such transformation we could overcome up to a certain extent 
numerical difficulties due to the fact, that in relevant cases the 
support of f essentially increases and travels to the right as 
time increases. 
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