EQUADIFF 5

Josef Král

Potential flows

In: Michal Greguš (ed.): Equadiff 5, Proceedings of the Fifth Czechoslovak Conference on Differential Equations and Their Applications held in Bratislava, August 24-28, 1981. BSB B.G. Teubner Verlagsgesellschaft, Leipzig, 1982. Teubner-Texte zur Mathematik, Bd. 47. pp. 198--204.

Persistent URL: http://dml.cz/dmlcz/702288

Terms of use:

© BSB B.G. Teubner Verlagsgesellschaft, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

POTENTIAL FLOWS

Josef Kral
Praha, Czechoslovakia

The role played by the Gauss bell-shaped function
$(2 \pi t)^{-\frac{n}{2}} e^{-\frac{|x|^{2}}{2 t}}$
of the variable $x \in R^{n}$ in connection with the heat equation is well known; for any Borel set $E \subset R^{n}$ the integral

$$
\begin{equation*}
\int_{E}(2 \pi t)^{-\frac{n}{2}} e^{-\frac{|x|^{2}}{2 t}} d x \tag{1}
\end{equation*}
$$

may be interpreted as the quantity of heat situated in E at the instant $t>0$ in consequence of the action of a point source at the origin which emanated the unit quantity of heat at the instant 0 . Impulses coming from various investigations in mathematics and physics led to extensions of the Gauss measure defined by (1) on Borel sets $E \subset R^{n}$ to infinite dimensional spaces (cf. [9], [18], [21], [22], [25]). Following L. Gross [11] - [13] we first briefly recall some considerations connected with the concept of the so-called Wiener space. Let H be a real separable Hilbert space with the scalar pro-
 $\left.\left[\left(h, h_{1}\right), \ldots,\left(h, h_{n}\right)\right] \in E\right\}$ where $h_{1}, \ldots, h_{n_{n}}$ is a finite orthonormal system in H and E is a Borel set in R^{n}. For such $a C$ the quantity (1) (which actually depends on C only and not on the choice of the orthonormal system describing it) will be denoted by $\mu_{t}(C)$. The set function μ_{t} is additive on the algebra of cylinder sets but it fails to be countably additive if $\mathrm{dim} H=\infty$. This indicates the idea of completing H with respect to a new norm ||...|| A norm
 finite dimensional projection $P_{\varepsilon}: \dot{H} \rightarrow \vec{H}$ such that $\mu_{1}\left(C_{p}\right)<\varepsilon$ for $C_{p}=\{h \in H ;||P h||>\varepsilon\}$ whenever P is a finite dimensional projection orthogonal to P_{ε}. If B denotes the completion of H with respect to a fixed measurable norm $|\mid \ldots \|$ then the natural inclusion $H C B$ is continuous and the pair (H, B) is called an abstract Wiener space. If B^{*} is dual to B and $<\ldots$... is the pairing between B^{*} and B then any $y^{*} \in B^{*}$ represents, by restriction, a continuous linear functional on H and as such may be identified, via the Riesz representation theorem, with the corresponding element $y \in H$ determined by the equality $\left\langle y^{*}, h\right\rangle=(y, h), h \in \cdot H$. We thus arrive at the (dense) inclusions $B^{*} C H \subset B$. Given a Borel set EC
$\subset R^{n}$ and a linearly independent system $\left\{y_{1}, \ldots, y_{n}\right\} \subset B^{*}$ we may form the cylinder $C=\left\{x \in B ;\left[\left\langle y_{1}, x\right\rangle, \ldots,\left\langle y_{n}, x\right\rangle\right] \in E\right\}$ whose trace on H is $C_{H}=\left\{h \in H ;\left[\left(y_{1}, h\right), \ldots,\left(y_{n}, h\right)\right] \in E\right\}$. (Before calculating $\mu_{t}\left(C_{H}\right)$, one should note that $\left\{y_{1}, \ldots, y_{n}\right\}$ need not be orthonormal in H.) Defining $p_{t}(C)=\mu_{t}\left(C_{H}\right)$ we obtain a set function p_{t} on the algebra of all cylinders C in B; now p_{t} possesses a unique countably additive extension to the σ-algebra of all Borel sets in B. The Wiener space (H, B) equipped with the probability measures p_{t} ($t>0$) represents a natural playground for many potential theoretic investigations. The measures $\left\{p_{t}\right\}_{t>0}$ form a convolution semigroup which permits to solve suitably formulated Cauchy problem where the initial conditions are given by functions (cf. [12], [20]) or by measures (compare [23]). They also generate the fundamental solution of the heat conduction operator $\Omega=\partial_{t}-\frac{1}{2} \Delta$ in the space-time $A=$ $=\mathrm{R}^{1} \times \mathrm{B}$ whose elements will be written in the form $a=[t, b]$ with $t \in R^{1}, b \in B$ and normed by $\left(|t|^{2}+||b||^{2}\right)^{\frac{1}{2}} ; \quad H$ will be identified with the subspace $\{0\} \times H$ in A. Let us define r on Borel sets $M \subset A$ by $r(M)=\int_{0}^{\infty} p_{t}(\{b \in B ;[t, b] \in M\}) d t$. Then $r \geq 0$ is a measure which is finite on sets that are upper bounded in time. If $\tilde{\Omega}$ denotes the formal adjoint to n then $\int \tilde{\Omega} \phi d_{\gamma}=\phi(0)$ for all test functions ϕ to be defined below; this means that $\cap \gamma=\delta$ ($=$ the unit Dirac measure concentrated at the origin of A). Let us recall that a function $f: A \rightarrow R^{1}$ defined in some neighborhood of $a \in A$ is termed quasidifferentiable at a if there is a $D f(a) \in A^{*}$ such that, for each continuous $a:(-1,1) \rightarrow A$ differentiable at 0 with $\alpha(0)=a$, the composition $t \mapsto f(\alpha(t))$ has a derivative at 0 given by <Df(a), $\left.a^{\prime}(0)\right\rangle$. We shall deal with uniformly continuous functions ϕ with bounded support that are everywhere quasidifferentiable with D_{ϕ} bounded (in the dual norm) and $\left[a_{1}, a_{2}\right] \mapsto\left\langle D_{\phi}\left(a_{1}\right), a_{2}\right\rangle$ continuous on $A \times A$; such a ϕ will be called test function if, in addition, for any fixed a the function $h \mapsto \phi(a+h)$ is twice Frechet differentiable at the origin of H , the corresponding second order differential $D^{2} \phi(a)$ (considered as a linear operator on H) is of trace class and the map $a \mapsto D^{2} \phi(a)$ into the space of all trace class operators on H is bounded and continuous. For any test function ϕ the laplacian $\Delta \phi(a)=$ Trace $D^{2} \phi(a)$ as well as $a_{t} \phi(a)=$ $=\left\langle D_{\phi}(a) ;[1,0]\right\rangle$, $\langle\hat{D} \phi(a), b\rangle=\langle D \phi(a),[0, b]\rangle \quad(b \in B)$ are defined and $\tilde{n} \phi=-\left(\partial_{t}+\frac{1}{2} \Delta\right)$ is a bounded continuous function with bounded support. It is an important consequence of results of [12], [8], [10] that the class of all test functions is sufficiently rich to admit
construction of partitions of unity subordinated to open covers of the space; any uniformly continuous function with bounded support is a uniform limit of a sequence of test functions. Convolutions of r with other measures generate potentials useful for treating various boundary value problems. As an illustrative example we shall consider the so-called Fourier problem (cf. [15]. [19] for related finite dimensional considerations). Let us fix a $T>0$ and an open set Ω (B with boundary $\partial \Omega$. Put $V=(0, T) \times \Omega, Q=\langle 0, T) \times \partial \Omega$ and denote by \mathcal{B}^{\prime} the space of all signed Borel measures v on A whose variation $|v|$ fulfils $|v|(A \backslash Q)=0$. With each $v \in$. \mathcal{B}^{\prime} we associate its potential $u \equiv u_{v}=v * \gamma$ defined on the σ-aigebra \mathcal{H}_{T} of all Borel sets $M C\left(-\infty, T>\times B\right.$ by $u(M)=\int v(M-a) \gamma(d a)$. It follows from basic properties of γ that u is H-differentiable: there exists a countably additive H-valued measure $M \rightarrow$ grad $u(M) \in H$ on \dot{H}_{T} such that, for any $h \in H$ and $M \in \mathcal{M}_{T}, \lim _{t \rightarrow 0 t} t^{-1}[u(M+t h)-u(M)]=$ $=(h, \operatorname{grad} u(M))$ (cf. [1] for differentiability of measures). If $\phi \in$ $E D_{T_{i}}$ ($=$ the class of all test functions with support in ($-\infty, T$) \times B) then $\hat{D}_{\phi}: A \rightarrow B^{*} C H$ can be integrated against the vector-valued measure grad $u: \mu_{T} \rightarrow H$ and the bilinear integral (cf. [2]) extended over V permits to define the functional $H v$ over \boldsymbol{D}_{T} by

$$
\langle\phi, H v\rangle=\int_{V}\left(\hat{D}_{\phi}, \operatorname{grad} u_{v}\right)-2 \int_{V} \theta_{t} \phi(a) u_{v}(d a), \phi \in D_{T}
$$

IHं will be called the heat flow associated with v. It is easily seen that $\left\langle\phi\right.$, Hus $=0$ if $\phi \in D_{T}$ and $Q \cap$ spt $\phi \phi$. The physical significance of $\mathbb{H} \nu$ is best illustrated in finite dimensional case when grad u_{v} has a density ∇u_{v} (with respect to the Lebesgue measure) extending from V to a continuous function on $V \cup Q$; if $\partial \Omega$ is smooth, N is the unit exterior normal to V and σ is the surface measure, then

$$
\langle\phi, \| H\rangle=\int_{Q} \phi\left(N_{i} \nabla u_{v}\right) d \sigma, \phi \in \mathcal{D}_{T}
$$

In general case $H v$ need not be representable by a (signed) measure
 μ then it is uniquely determined by the requirement $|\mu|(<T,+\infty) \times B)=$ $=0$; under this condition it belongs to B^{\prime} and, as usual, will be identified with $\mathbb{H} v$. In order to get geometriciconditions on Ω guaranteeing $H v \in \mathcal{B}^{\prime}$ for every $v \in \mathcal{B}^{\prime}$ it.is useful to adopt the following definition (compare [14], [17]).

DEFINITION. If C is a Banach space, MCC is a Borel set and $\omega: I \rightarrow C$ is a simple differentiable path-curve defined on an interval $I \subset R^{1}$, then $C \in C$ is termed a hit of ω on M if there is $a \quad t_{c} \in I$ with $\omega\left(t_{c}\right)=c$ and for each neighborhood u of c in C both $\{t \in I ; \omega(t) \in U \cap M\}$ and $\{t \in I ; \omega(t) \in u \backslash M\}$ have positive linear measure.

This definition enables us to formulate the required condition in terms of the measure p_{1} as follows.

THEOREM 1. Given $R>0$, $x \in \partial \Omega$ and $b \in B$ we denote by $n_{R}(x, b)$ the total number of all hits of $\{x+t b ; 0<t<R\}$ on $\Omega \subset B$. Then the function $b \mapsto n_{R}(x, b)$ is measurable and

$$
\begin{equation*}
\sup _{x \in \partial \Omega} \int_{B} n \sqrt{T}(x, b) p_{1}(d b)<\infty \tag{2}
\end{equation*}
$$

is a necessary and sufficient condition guaranteeing that $H v \in \mathcal{B}^{\prime}$ for each $v \in \mathcal{B}^{\prime}$. If (2) hoZds then $\mathbb{H}: \nu \mapsto \mathbb{H} v i s$ a bounded operator on the space \mathbb{B}^{\prime} equipped with the norm $||v||=|v|(Q)$.

The norm of the operator H can also be simply evaluated. If $x \in \partial \Omega$ and $R>0$ then $\int_{B} n_{R}(x, b) p_{1}(d b)<\infty$ implies measurability of the set Ω_{x} formed by those $b \in B$ for which there is a $\delta \equiv$ $\equiv \delta(x, b)>0$ with $x+t b \in \Omega$ for a.e. $t \in(0, \delta)$. Assuming (2) and writing $d_{\Omega}(x)=p_{1}\left(\Omega_{x}\right)$ (which in finite dimensional case reduces to the Lebesgue density of Ω at x) we have

$$
||H||=2 \sup _{x \in \partial \Omega}\left\{d_{\Omega}(x)+\int_{B} n_{\sqrt{T}}(x, b) p_{1}(d b)\right\}
$$

In particular, $||H|| \leq 2$ for convex Ω.
The condition (2) can be somewhat simplified if we put $\quad \Gamma=$ $=\{\theta \in B ;||\theta||=1\}$ and denote by σ_{1} the probability measure on r which is the image of p_{1} under the projection $b \mapsto \frac{b}{\|b\|}$ of $B \backslash\{0\}$ onto r. Then

$$
\infty>\sup _{x \in \partial \Omega} \int_{\Gamma} n_{\infty}(x, \theta) \sigma_{1}(d \theta) \quad\left(=\sup _{x \in \partial \Omega} \int_{B} n_{\infty}(x, b) p_{1}(d b)\right)
$$

is sufficient (and also necessary in finite dimensional case) for validity of (2).

In what follows we always assume (2). The Fourier problem has then the following natural weak formulation: Given $\mu \in \mathcal{B}^{\prime}$, determine a $v \in \mathcal{B}^{\prime}$ with $H v=\mu$. General description of the range of \mathbb{H} is
not known. However, sufficient geometric conditions on Ω guaranteeing invertibility of \mathbb{H} can be established. If $P C \partial \Omega$ is a Borel set and \mathcal{B}_{p}^{\prime} denotes the subspace of all $v \in \mathcal{B}^{\prime}$ with $|v|(<0, T) \times P)=|v|(Q)$, then the following result holds.

THEOREM 2. If
(3) $\quad \lim _{r \rightarrow 0+} \sup _{x \in P}\left\{\left|2 d_{\Omega}(x)-1\right|+2 \int_{B} n_{r}(x, b) p_{1}(d b)\right\}<1$,
then for every $v \in \mathcal{B}_{P}^{\prime}$ there exists a unique $\mu \in \mathcal{B}_{P}^{\prime}$ such that $\mathbb{H} \mu(M)=\nu(M)$ for each Borel $M C<0, T) \times P$.

If all the functions $n_{\infty}(x,$.$) with x \in P$ are dominated by a common p_{1}-integrable function (or if dim $H<\infty$) then the integral occurring in (3) may equivalently be replaced by $\int_{\Gamma} n_{r}(x, \theta) \sigma_{1}(d \theta)$. Of course, main interest consists in $P=\partial \Omega$ when (3) implies the existence of a bounded inverse to \mathbb{H} on \boldsymbol{B}^{\prime}. As pointed out by W. Wendland, (3) then appears to be rather restrictive for certain nonconvex domains even in the finite dimensional case. It is therefore useful to replace $n_{r}(x, b)$ by a more general quantity counting hits with a suitable weight. Let $\Psi \geq 0$ be a lower semicontinuous function on $\partial \Omega$. Given $x, b \in B$ and $R>0$ we put $n_{R}^{\Psi}(x, b)=\sum_{0<t<R} Y(x+t b)$, where the sum extends over those t for which $x+t b$ is a hit of $\{x+t b ; 0<t<R\}$ on $\Omega C B$. If ψ is bounded and bounded away from zero, then (2) is equivalent to

$$
\sup _{x \in \partial \Omega} \int_{B} n_{\sqrt{T}}(x, b) p_{1}(d b)<\infty ;
$$

on the other hand, the condition

$$
\lim _{r \rightarrow 0+} \sup _{x \in \partial \Omega}\left\{\left|2 d_{\Omega}(x)-1\right|+2 \Psi^{-1}(x) \int_{B} n_{r}^{\Psi}(x, b) p_{1}(d b)\right\}<1,
$$

which guarantees the existence of a bounded inverse to \mathbb{H} on \mathcal{B}^{\prime}, can be shown to be more general than (3) for $P=\partial \Omega$. Restrictions imposed on Ψ may be relaxed and generalizations of the heat flow operator \boldsymbol{H} can be introduced acting on broader spaces of measures which need not have bo.inded variation.

Suitable extensions of the quantity $n_{r}(x, b)$ find application in treating boundary value problems for time-variable domains. If $\hat{v} \subset(0, T) \times B$ is a general open set and $\hat{Q}=\partial \hat{V} \cap\{(O, T) \times B\}$, then for any $z=[u, x] \in \mathscr{Q}$ the quantity $n(z, b)$ counting all the hits
of the parabola $\left\{\left[u+t^{2}, x+t b\right] ; t>0\right\}$ on $\hat{V} \subset A$ is a measurable function of the variable $b \in B$. The condition

$$
\begin{equation*}
\sup _{z \in \mathcal{Q}} \int_{B} n(z, b) p_{1}(d b)<\infty \tag{4}
\end{equation*}
$$

appears to be an adequate extension of (2) for this type of domains. This was shown in general investigations on integral representability of solutions of boundary value problems for the heat equation and the adjoint heat equation on time variable domains in finite dimensional spaces due to M. Dont and J. Vesely (cf. [5] - [7], [24]).

As shown by L. Gross [12] (cf. also [4]), Newtonian potentials on B can naturally be defined with help of the measure which is the image of r under the projection $[t, b] \rightarrow b$ of A onto B. In finite dimensional case results related to those described above were obtained for Newtonian potentials in [3], [14] (cf. also [16] for comments and references).

REFERENCES

[1] В. И. Авербух, О. Г. Смолянов, С. В. Фомин: Обобщеннне функции и дифференциальные уравнения в линейных пространствах, Труди Московского мат. об-ва 24 (1971), 133-174.
[2] R. G. Bartle: A general bilinear vector integral, Studia Mathematica XV (1955), 337-352.
[3] D. Д. Бураго, В. Г. Маяья: Некоторые вопросн теории потенциала и теории функций для областей с нерегулярннми гранидами, Записки научних семинаров ЛОми т. З, 1967.
[4] R. Carmona: Infinite dimensional Newtonian potentials, Proc. Conference "Probability theory on vector spaces II", Lecture Notes in Math. vol. 828, Springer-Verlag 1980, 30-43.
[5] M. Dont: On a heat potential, Czechoslovak Math. J. 25 (1975), 84-109.
[6] M. Dont: On a boundary value problem for the heat equation, Czechoslovak Math. J. 25 (1975), 110-133.
[7] M. Dont: Flows of heat and time moving boundary, to appear.
[8] X. Fernique: Intégrabilité des vecteurs Gaussiens, C.R.Acad. Sci. Paris 270 (1970), sér. A, 1698-1699.
[9] И. М. Гедьфавд, Н. Я. Вихенкон: 0бобщеннме функцип вып. 4, Mocxse 1961.
[10] V. Goodman: Quasi-differentiable functions on Banach spaces, Proc. Amer. Math. Soc. 30 (1971), 367-370.
[11] L. Gross: Classical analysis on a Hilbert space, Proc. Conf. "Analysis in Function Space", M.I.T. Press 1964, 51-68.
[12] L. Gross: Potential theory on Hilbert space, Journal of Functional Analysis 1 (1967), 123-181.
[13] L. Gross: Abstract Wiener spaces, Proc. Fifth Berkeley Symp. on Math. Stat. and Prob. vol. II, Univ. of California Press 1967, 31-42.
[14] J. Kral: The Fredholm method in potential theory, Trans. Amer. Math. Soc. 125 (1966), 511-547.
[15] J. Kral: Flows of heat and the Fourier problem, Czechoslovak Math. J. 20 (1970), 556-598.
[16] J. Kral: Integrai operators in potential theöry, Lecture Notes in Math. vol. 823, Springer-Verlag 1980.
[17] J. Kral: Boundary behavior of potentials, Proc. Conf. Equadiff IV, Lecture Notes in Math. vol. 703, Springer-Verlag 1979, 205-212.
[18] Hui-Hsiung Kuo: Gaussian measures in Banach spaces, Lecture Notes in Math. vol. 463, Springer-Verlag 1975.
[19] I. Netuka: A mixed boundary value problem for heat potentials, Comment. Math. Univ. Carolinae 19 (1978), 207-211.
[20] M. Ann Piech: A fundamental solution of the parabolic equation on Hilbert space, Journal of Functional Analysis 3 (1969), 85-114.
[21] А. В. Скороход: Интегрирование г гихьбертовом прострадстве, Мосхва 1975.
 линейних прострапствех, Москва 1967.
[23] А. В. Урданов: Уравление тепоороводиостх для мер в осламенном гидвбертовом простравстве. Вестних Мосховсхого ув-та 1971, $\mathrm{H}^{6}-1,52-60$.
[24] J. Vesely: On a generalized heat potential, Czechoslovak Math. J. 25 (1975), 404-423.
[25] Xia Dao-Xing: Measure and integration theory on infinite-dimensional spaces, Academic Press, New York and London 1972.

