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FREE VIBRATIONS FOR THE EQUATION u^-u^+f (u) - 0 

WITH f SUBLINEAR 

Vladimir Lovicar 
Praha, Czechoslovakia 

Summary: The assumptions on a function f are found under which the 

equation utt~uxx+f (u* " ° w i t h tiie boundary conditions u(t,0) -

- u(t,w) - 0 has a nontrivial 2 IT-periodic solution. 

1, Notation, 

The symbol Jv denotes the integral of a function v over 

(0,2*) x (0,*) • fy L , 1 < p < • (or Lw ) t we denote the space 

of real-valued measurable functions u on R x (0,*) , 2w-periodic 

in the first variable and satisfying |u| - (J|u|p) ' p < • (or 

|u|w - sup ess|u(t,x)| < «• , respectively). 

The functions e,, are defined on R x (0,ir) by 

e j k ( t f X . ) - <S 

For u £ L.. we put 

•— cos jt sin kx for j, k E N , 

i sin kx for j - 0 , k G N 

J? 
•— sin jt sin kx for -j, k £ N • 

aj]t(u) - (uejJt 

2, Weak 2ir-periodic solutions of the wave equation* 

Let f be a real-valued function on R • A function u £ L . is 

called a (weak 2ir-periodic) solution to the problem 

(1) u t t - u ^ + f (u) - 0 , u(t,0) - u(t,ir) - 0 , 

if the composed function f(u) belongs to L and 

(j2 - k2)ajk(u) - ajk(f(u)) 

for any j , k • 

In the paper [lj the existence of a nontrivial solution to (1) 

with f of the form 

(2) f(u) - |u|a sgn(u) (0 < a < 1) 

is established. In the paper [2] the existence of nontrivial T-perio-

dic solutions (T sufficiently large) to (1) is proved for a rather 
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general class of sublinear functions f . 

3. Formulation of main results. 

Let us denote by S (or S') the set of all functions f which 

fulfil the following assumptions (SI) - (S4*) (or (Si) - (S5), respec

tively) : 

(Si) f £ C(R,R) , odd, increasing; 

(52) f is continuously differentiable on R \ {0} and 

f(u)u > f'(u)u2 for u T- 0 .; 

(53) there exist constants c. > 0 and 6 £ (0,1) such that 

f (u) > c. u6 for u > 0 ; 

(SH) there exist constants c», c. > 0 and p > 2 such that 

u 

ff(s)ds - | uf(u) > c2|f(u)|
p - c3 for u £ R ; 

0 

(S5) the function u —-#- uf (u) is convex. 

Let us note that any function if of the form (2) belongs to S' 

and that £*9 £2 £ S' and a, b > 0 implies af1 + bf2 € S' . 

THEOREM l. For any f 6 s there exists a non trivial solution u £ L 

to the problem (1). 

u 

THEOREM 2. Let f £ S ' and let us denote F(u) - If (s)ds for u £ 

0 

£ R . Then there exists a sequence {un; n £ N} of solutions to 

(1), such that un £ Lm (n € N) and f /(F(un)- funf(un)); n £ N } 

forms a decreasing sequence of positive reals with 0 as a limit 

point. 

4. Sketch of proofs. 

a) Let f £ S . First we shall seek solutions of the "modified" prob

lem 

U e ) utt - u ^ + fe(u) - 0 , u(t,0) - u(t,w) - 0 , 

where f (u) - f(u) + e|u| ' p sgn(u) (and p is the same as 

in (S-O). 

b) Approximate solutions for (1 ) will be obtained as critical points 
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where F (u) - f (s)ds 
e I £ 

of functionals g , defined on H - linfe..; |j| < n, k < n) 

by 

n̂,e<u> - 4 R ^ + J Fe ( U ) • 
u 

I' 
0 

c) The following assertion plays a fundamental role: For any a > 0 
there exists k(a) 6 (0,a) such that for a sufficiently large n 
and e e (0,1) there exists a critical point u of g 

with 9n,E
(Ve> " / . ( W - } " \ Un.E

fe(Un.e^
 £ &(a)'a-l ' 

In order to obtain those appropriate approximate solutions, the 
Ljusternik-Schnirelmann theory is used. 

d) Let e e (0,1) be fixed. Then it may be shown (by a monotonicity 
argument) that a certain subsequence of {u ; n £ N} converges 
weakly in L , (where pr is conjugate to p ) to a solution 
u £ L t of (1 ) and that, moreover, /u f (u ) >_ 2k(a) > 0 
(i.e. that u is a nontrivial solution). 

e) As u solves (1 ), the relation 
IT 

|(fe(u£(t-x,x)) - fe(u£(t+x,x)))dx - 0 
0 

is valid for a.e. t . By using this fact it may be shown that u 
belong to Lw and are bounded in L^ uniformly with respect to 
e € (0,1) . 

f) By making use of the above assertion it is possible to obtain by 
the limiting process for e —*• 0 (again mainly by a monotonicity 
argument) a solution u £ Lw to the problem (1) with /uf(u) > 
,> 2k (a) > 0 , which proves Theorem 1. 

g) If f £ S' then it may be shown that the solution u obtained 
by the above procedure satisfies / ( F ( U ) - juf^)) £ Ck(a),a| , 
which easily implies the validity of Theorem 2. 
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