EQUADIFF 5

Vladimír Lovicar

Free vibrations for the equation $u_{t t}-u_{x x}+f(u)=0$ with f sublinear

In: Michal Greguš (ed.): Equadiff 5, Proceedings of the Fifth Czechoslovak Conference on Differential Equations and Their Applications held in Bratislava, August 24-28, 1981. BSB B.G. Teubner Verlagsgesellschaft, Leipzig, 1982. Teubner-Texte zur Mathematik, Bd. 47. pp. 228--230.

Persistent URL: http://dml.cz/dmlcz/702295

Terms of use:

© BSB B.G. Teubner Verlagsgesellschaft, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

FREE VIBRATIONS FOR THE EQUATION $u_{t t}-u_{x x}+f(u)=0$ WITH f SUBLINEAR

Vladimír Lovicar Praha, Czechoslovakia

Summary: The assumptions on a function f are found under which the equation $u_{t t^{-u}} u_{x x}+f(u)=0$ with the boundary conditions $u(t, 0)=$ $=u(t, \pi)=0$ has a nontrivial 2π-periodic solution.

1. Notation.

The symbol $\int v$ denotes the integral of a function v over $(0,2 \pi) \times(0, \pi)$. By $L_{p}, 1 \leq p<\infty$ (or L_{∞}), we denote the space of real-valued measurable functions u on $R \times(0, \pi), 2 \pi$-periodic in the first variable and satisfying $|u|_{p}=\left(\int|u|^{p}\right)^{1 / p}<\infty \quad$ (or $|u|_{\infty}=\sup \operatorname{ess}|u(t, x)|<\infty$, respectively).

The functions $e_{j k}$ are defined on $R \times(0, \pi)$ by

$$
e_{j k}(t, x)= \begin{cases}\frac{\sqrt{2}}{\pi} \cos j t \sin k x & \text { for } j, k \in N, \\ \frac{1}{\pi} \sin k x & \text { for } j=0, k \in N, \\ \frac{\sqrt{2}}{\pi} \sin j t \sin k x & \text { for }-j, k \in N .\end{cases}
$$

For $u \in L_{1}$ we put

$$
a_{j k}(u)=\int u e_{j k} .
$$

2. Weak 2π-periodic solutions of the wave equation.

Let f be a real-valued function on R. A function $u \in L_{1}$ is called a (weak 2π-periodic) solution to the problem
(1)

$$
u_{t t}-u_{x x}+f(u)=0, u(t, 0)=u(t, \pi)=0 \text {. }
$$

if the composed function $f(u)$ belongs to L_{1} and

$$
\left(j^{2}-k^{2}\right) a_{j k}(u)=a_{j k}(f(u))
$$

for any j,k.
In the paper [1] the existence of a nontrivial solution to (1) with f of the form

$$
\begin{equation*}
f(u)=|u|^{\alpha} \operatorname{sgn}(u) \quad(0<\alpha<1) \tag{2}
\end{equation*}
$$

is established. In the paper [2] the existence of nontrivial T-periodic solutions (T sufficiently large) to (1) is proved for a rather

```
general class of sublinear functions f .
```


3. Formulation of main results.

Let us denote by S (or S^{\prime}) the set of all functions f which fulfil the following assumptions (S1) - (SH) (or (S1) - (S5), respectively):
(S1) $f \in C(R, R)$, odd, increasing;
(S2) f is continuously differentiable on $R \backslash\{0\}$ and

$$
f(u) u \geq f^{\prime}(u) u^{2} \text { for } u \neq 0 .
$$

there exist constants $c_{1}>0$ and $\delta \in(0,1)$ such that

$$
\begin{equation*}
f(u) \geq c_{1} u^{\delta} \quad \text { for } u>0 ; \tag{S3}
\end{equation*}
$$

(S4) there exist constants $c_{2}, c_{3}>0$ and $p>2$ such that

$$
\int_{0}^{u} f(s) d s-\frac{1}{2} u f(u) \geq c_{2}|f(u)|^{p}-c_{3} \quad \text { for } u \in R ;
$$

(S5) the function $u \rightarrow u f(u)$ is convex.
Let us note that any function f of the form (2) belongs to S^{\prime} and that $f_{1}, f_{2} \in S^{\prime}$ and $a, b>0$ implies $a f_{1}+b f_{2} \in S^{\prime}$.

THEOREM 1. FOX any $f \in S$ there exists a nontrivial solution $u \in L_{\infty}$ to the problem (1).

THEOREM 2. Let $f \in S^{\prime}$ and let us denote $F(u)=\int_{0}^{u} f(s) d s$ for $u \in$ $E R$. Then there exists a sequence $\left\{u_{n} ; n \in N\right\}$ of solutions to (1), such that $u_{n} \in L_{\infty}(n \in N)$ and $\left\{\int\left(F\left(u_{n}\right)-\frac{1}{2} u_{n} f\left(u_{n}\right)\right) ; n \in N\right\}$ forms a decreasing sequence of positive reals with 0 as a limit point.
4. Sketch of proofs.
a) Let $f \in S$. First we shall seek solutions of the "modified" problem
$\left(1_{\varepsilon}\right) \quad u_{t t}-u_{x x}+f_{\varepsilon}(u)=0, u(t, 0)=u(t, \pi)=0$. where $f_{\varepsilon}(u)=f(u)+\varepsilon|u|^{1 / p-1} \operatorname{sgn}(u)$ (and p is the same as in (S4)).
b) Approximate solutions for (1_{ε}) will be obtained as critical points
of functionals $g_{n, \varepsilon}$, defined on $H_{n}=\operatorname{lin}\left\{e_{j k} ;|j| \leq n, k \leq n\right\}$ by

$$
g_{n, \varepsilon}(u)=-\frac{1}{2} \int\left(u_{t}^{2}-u_{x}^{2}\right)+\int F_{\varepsilon}(u),
$$

where $F_{\varepsilon}(u)=\int_{0}^{u} f_{\varepsilon}(s) d s$.
c) The following assertion plays a fundamental role: For any a>0 there exists $k(a) \in(0, a)$ such that for a sufficiently large n and $\varepsilon \in(0,1)$ there exists a critical point $u_{n, \varepsilon}$ of $g_{n, \varepsilon}$ with $g_{n, \varepsilon}\left(u_{n, \varepsilon}\right)=\int\left(F_{\varepsilon}\left(u_{n, \varepsilon}\right)-\frac{1}{2} u_{n, \varepsilon} f_{\varepsilon}\left(u_{n, \varepsilon}\right)\right) \in[k(a), a]$.
In order to obtain those appropriate approximate solutions, the Ljusternik-Schnirelmann theory is used.
d) Let $\varepsilon \in(0,1)$ be fixed. Then it may be shown (by a monotonicity argument) that a certain subsequence of $\left\{u_{n, \varepsilon} ; n \in N\right\}$ converges weakly in L_{p}, (where p^{\prime} is conjugate to p) to a solution $u_{\varepsilon} \in L_{p}$ of (1_{ε}) and that, moreover, $\int u_{\varepsilon} f_{\varepsilon}\left(u_{\varepsilon}\right) \geq 2 k(a)>0$ (i.e. that u_{ε} is a nontrivial solution).
e) As u_{ε} solves (1_{ε}), the relation

$$
\int_{0}^{\pi}\left(f_{\varepsilon}\left(u_{\varepsilon}(t-x, x)\right)-f_{\varepsilon}\left(u_{\varepsilon}(t+x, x)\right)\right) d x=0
$$

is valid for a.e. t. By using this fact it may be shown that u_{ε} belong to L_{∞} and are bounded in L_{∞} uniformly with respect to $\varepsilon \in(0,1)$.
f) By making use of the above assertion it is possible to obtain by the limiting process for $\varepsilon \rightarrow 0$ (again mainly by a monotonicity argument) a solution $u \in L_{\infty}$ to the problem (1) with $\int u f(u) \geq$ $\geq 2 k(a)>0$, which proves Theorem 1 .
g) If $f \in S^{\prime}$ then it may be shown that the solution u obtained by the above procedure satisfies $\int\left(F(u)-\frac{1}{2} u f(u)\right\} \in[k(a), a]$, which easily implies the validity of Theorem 2.

References
[1] H. Brézis, J.-M. Coron, L. Nirenberg: Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz. Comon. Pure Appl. Mat. 33 (1980), 667-689.
[2] H. Brézis, J.-M. Coron: Periodic solutions of nonlinear wave equations and Hamiltonian systems (preprint).

